We prove that every $n$-vertex directed graph $G$ with the minimum outdegree $\delta ^+(G) = d$ contains a subgraph $H$ satisfying
| \[ \min \left\lbrace \delta ^+(H), \delta ^-(H) \right\rbrace \ge \frac{d(d+1)}{2n} \,. \] |
We also show that if $d = o(n)$ then this bound is asymptotically best possible.
Accepted:
Published online:
Grzesik, Andrzej 1; Rödl, Vojtěch 2; Volec, Jan 3
CC-BY 4.0
@article{IGT_2025__2__301_0,
author = {Grzesik, Andrzej and R\"odl, Vojt\v{e}ch and Volec, Jan},
title = {Subgraphs with a positive minimum semidegree in digraphs with large outdegree},
journal = {Innovations in Graph Theory},
pages = {301--312},
year = {2025},
publisher = {Stichting Innovations in Graph Theory},
volume = {2},
doi = {10.5802/igt.14},
language = {en},
url = {https://igt.centre-mersenne.org/articles/10.5802/igt.14/}
}
TY - JOUR AU - Grzesik, Andrzej AU - Rödl, Vojtěch AU - Volec, Jan TI - Subgraphs with a positive minimum semidegree in digraphs with large outdegree JO - Innovations in Graph Theory PY - 2025 SP - 301 EP - 312 VL - 2 PB - Stichting Innovations in Graph Theory UR - https://igt.centre-mersenne.org/articles/10.5802/igt.14/ DO - 10.5802/igt.14 LA - en ID - IGT_2025__2__301_0 ER -
%0 Journal Article %A Grzesik, Andrzej %A Rödl, Vojtěch %A Volec, Jan %T Subgraphs with a positive minimum semidegree in digraphs with large outdegree %J Innovations in Graph Theory %D 2025 %P 301-312 %V 2 %I Stichting Innovations in Graph Theory %U https://igt.centre-mersenne.org/articles/10.5802/igt.14/ %R 10.5802/igt.14 %G en %F IGT_2025__2__301_0
Grzesik, Andrzej; Rödl, Vojtěch; Volec, Jan. Subgraphs with a positive minimum semidegree in digraphs with large outdegree. Innovations in Graph Theory, Volume 2 (2025), pp. 301-312. doi: 10.5802/igt.14
[1] Testing subgraphs in directed graphs, J. Comput. Syst. Sci., Volume 69 (2004) no. 3, pp. 354-382 | DOI | Zbl | MR
[2] Digraphs: theory, algorithms and applications, Springer, 2008 | MR
[3] On minimal digraphs with given girth, Congr. Numerantium, Volume 21 (1978), pp. 181-187 | Zbl
[4] Short cycles in directed graphs, J. Comb. Theory, Ser. B, Volume 35 (1983) no. 3, pp. 323-327 | DOI | Zbl | MR
[5] On an extremal problem in graph theory, Colloq. Math., Volume 13 (1964), pp. 251-254 | DOI | Zbl | MR
[6] On extremal problems of graphs and generalized graphs, Isr. J. Math., Volume 2 (1964) no. 3, pp. 183-190 | Zbl | MR | DOI
[7] Large feedback arc sets, high minimum degree subgraphs, and long cycles in Eulerian digraphs, Comb. Probab. Comput., Volume 22 (2013) no. 6, pp. 859-873 | DOI | MR | Zbl
[8] Directed Triangles in Digraphs, J. Comb. Theory, Ser. B, Volume 74 (1998) no. 2, pp. 405-407 | DOI | Zbl | MR
Cited by Sources:


