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PRODUCT STRUCTURE OF GRAPH CLASSES WITH
STRONGLY SUBLINEAR SEPARATORS

by Zdeněk DVOŘÁK & David R. WOOD (*)

Abstract. — We investigate the product structure of hereditary graph classes
admitting strongly sublinear separators. We characterise such classes as subgraphs
of the strong product of a star and a complete graph of strongly sublinear size.
In a more precise result, we show that if any hereditary graph class G admits
O(n1−ϵ) separators, then for any fixed δ ∈ (0, ϵ) every n-vertex graph in G is
a subgraph of the strong product of a graph H with bounded tree-depth and a
complete graph of size O(n1−ϵ+δ). This result holds with δ = 0 if we allow H to
have tree-depth O(log log n). Moreover, using extensions of classical isoperimetric
inequalties for grids graphs, we show the dependence on δ in our results and the
above td(H) ∈ O(log log n) bound are both best possible. We prove that n-vertex
graphs of bounded treewidth are subgraphs of the product of a graph with tree-
depth t and a complete graph of size O(n1/t), which is best possible. Finally,
we investigate the conjecture that for any hereditary graph class G that admits
O(n1−ϵ) separators, every n-vertex graph in G is a subgraph of the strong product
of a graph H with bounded tree-width and a complete graph of size O(n1−ϵ). We
prove this for various classes G of interest.
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1. Introduction

Graph(1) product structure theory describes complicated graphs as sub-
graphs of strong products(2) of simpler building blocks. Examples of graphs
classes that can be described this way include planar graphs [38, 79],
graphs of bounded Euler genus [30, 38], graphs excluding a fixed minor [18,
38, 58], various non-minor-closed classes [7, 31, 41, 57], and graphs of
bounded tree-width [18, 25]. These results have been the key to solving
several long-standing open problems about queue layouts [38], nonrepet-
itive colourings [37], centred colourings [21], adjacency labelling [36, 51],
twin-width [16, 59, 61], vertex ranking [17], and box dimension [44]. This
paper studies the product structure of graph classes with strongly sublinear
separators, which is a more general setting than all of the above classes.

1.1. Background

A balanced separator in an n-vertex graph G is a set S ⊆ V (G) such that
each component of G − S has at most n

2 vertices. The separation-number
sep(G) of a graph G is the minimum size of a balanced separator in G.

For a graph parameter f and graph class G, let f(G) be the function
n 7→ max{f(G) : G ∈ G, |V (G)| = n}. We say G has strongly sublinear f

if f(G) ∈ O(n1−ϵ) for some fixed ϵ > 0 (where n is always the number of
vertices).

Many classes of graphs have strongly sublinear separation-number. For
example, Lipton and Tarjan [66] proved that planar graphs have separation-
number O(n1/2). More generally, Djidjev [33] and Gilbert, Hutchinson and

(1) We consider simple, finite, undirected graphs G with vertex-set V (G) and edge-
set E(G). A graph class is a collection of graphs closed under isomorphism. A graph
class is hereditary if it is closed under taking induced subgraphs. A graph class is mono-
tone if it is closed under taking subgraphs. A graph H is contained in a graph G if H is
isomorphic to a subgraph of G. A graph H is a minor of a graph G if H is isomorphic
to a graph obtained from a subgraph of G by contracting edges. A graph G is H-minor-
free if H is not a minor of G. A graph class G is minor-closed if every minor of each
graph in G is also in G. A Kh-model in a graph G consists of pairwise-disjoint vertex-sets
(U1, . . . , Uh) such that, G[Ui] is connected for each i and G[Ui ∪ Uj ] is connected for all
i, j. Clearly Kh is a minor of a graph G if and only if G contains a Kh-model. See [23]
for graph-theoretic definitions not given here. The Euler genus of a surface with h han-
dles and c cross-caps is 2h + c. The Euler genus of a graph G is the minimum integer
g ⩾ 0 such that G embeds in a surface of Euler genus g; see [70] for more about graph
embeddings in surfaces.
(2) The strong product of graphs A and B, denoted by A ⊠ B, is the graph with vertex-
set V (A) × V (B), where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if
v = w and xy ∈ E(B), or x = y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).
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Tarjan [54] independently proved that graphs embeddable on any fixed sur-
face have separation-number O(n1/2). More generally still, Alon, Seymour
and Thomas [2] proved that any proper minor-closed class has separation-
number O(n1/2). Many non-minor-closed classes also have strongly sublin-
ear separation-number. For example, Grigoriev and Bodlaender [55] proved
that graphs that have a drawing in the plane with a bounded number
of crossings per edge have separation-number O(n1/2). And Miller, Teng,
Thurston and Vavasis [69] proved that touching graphs of d-dimensional
spheres have separation-number O(n1−1/d) (amongst more general results).

The following characterisation of graph classes with strongly sublinear
separation-number in terms of tree-width(3) , path-width and tree-depth(4)

is folklore.

Theorem 1.1. — For fixed ϵ ∈ (0, 1), the following are equivalent for
any hereditary graph class G:

(a) G has separation-number sep(G) ∈ O(n1−ϵ),
(b) G has tree-width tw(G) ∈ O(n1−ϵ),
(c) G has path-width pw(G) ∈ O(n1−ϵ),
(d) G has tree-depth td(G) ∈ O(n1−ϵ).

Proof. — It follows from the definitions that for every graph G,

tw(G) ⩽ pw(G) ⩽ td(G) − 1.

Thus (d) ⇒ (c) ⇒ (b). Robertson and Seymour [74, (2.6)] showed that for
every graph G,

(1.1) sep(G) ⩽ tw(G) + 1.

Thus (b) ⇒ (a). It is folklore that (a) ⇒ (d); see [3, 10] for proofs that (a) ⇒
(c) which are easily adapted to show that (a) ⇒ (d). (Note that Dvořák and

(3) For a tree T , a T -decomposition of a graph G is a collection W = (Wx : x ∈ V (T ))
of subsets of V (G) indexed by the nodes of T such that (i) for every edge vw ∈ E(G),
there exists a node x ∈ V (T ) with v, w ∈ Wx; and (ii) for every vertex v ∈ V (G), the
set {x ∈ V (T ) : v ∈ Wx} induces a (connected) subtree of T . Each set Wx in W is
called a bag. The width of W is max{|Wx| : x ∈ V (T )} − 1. A tree-decomposition is
a T -decomposition for any tree T . The tree-width tw(G) of a graph G is the minimum
width of a tree-decomposition of G. Tree-width is the standard measure of how similar
a graph is to a tree. Indeed, a connected graph has tree-width 1 if and only if it is a tree.
A path-decomposition is a P -decomposition for any path P . The path-width pw(G) of a
graph G is the minimum width of a path-decomposition of G.
(4) A forest is rooted if each component has a nominated root vertex (which defines
the ancestor relation). The vertex-height of a rooted forest is the maximum number
of vertices in a root–leaf path. The closure of a rooted forest F is the graph G with
V (G) := V (F ) with vw ∈ E(G) if and only if v is an ancestor of w or vice versa. The
tree-depth td(G) of a graph G is the minimum vertex-height of a rooted forest T such
that G is a subgraph of the closure of T .
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Norin [47] proved a stronger relationship between balanced separators and
tree-width that holds without the “strongly sublinear” assumption.) □

We only consider products of the form H ⊠ Km, which is the “complete
blow-up” of the graph H, obtained by replacing each vertex of H by a
copy of the complete graph Km and each edge of H by a copy of the
complete bipartite graph Km,m. Such products can be characterised via
the following definition. For graphs H and G, an H-partition of G is a
partition P = (Vx : x ∈ V (H)) of V (G) indexed by the vertices of H such
that for each edge vw ∈ E(G), if v ∈ Vx and w ∈ Vy then xy ∈ E(H) or
x = y. The width of such an H-partition is max{|Vx| : x ∈ V (H)}. The
following observation follows immediately from the definitions.

Observation 1.2. — For any graph H and m ∈ N, a graph G is con-
tained in H ⊠ Km if and only if G has an H-partition of width m.

If P is an H-partition of a graph G, where H is a tree or a star, then
P is respectively called a tree- or a star-partition.(5) The tree-partition-
width tpw(G) is the minimum width of a tree-partition of G, and the star-
partition-width spw(G) is the minimum width of a star-partition of G. By
Observation 1.2, tpw(G) ⩽ k if and only if G is contained in T ⊠ Kk for
some tree T , and spw(G) ⩽ k if and only if G is contained in S ⊠ Kk for
some star S.

1.2. Bounded Width Partitions

Our first result (proved in Section 2) characterises graph classes with
strongly sublinear separation-number in terms of star- and tree-partition-
width.

Theorem 1.3. — The following are equivalent for any hereditary graph
class G:

(i) G has strongly sublinear separation-number,
(ii) G has strongly sublinear tree-partition-width,

(5) Tree-partitions were independently introduced by Seese [76] and Halin [56], and have
since been widely investigated [11, 12, 13, 18, 25, 26, 32, 48, 80, 81]. Tree-partition-
width has also been called strong tree-width [12, 76]. Applications of tree-partitions
include graph drawing [19, 22, 39, 42, 83], nonrepetitive graph colouring [5], clustered
graph colouring [1], monadic second-order logic [62], size Ramsey numbers [34], network
emulations [8, 9, 14, 52], machine learning theory [84], and the edge-Erdős-Pósa prop-
erty [20, 53, 72]. Planar-partitions and other more general structures have also been
studied [24, 27, 28, 73, 83].
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(iii) G has strongly sublinear star-partition-width.

We emphasise that ϵ is fixed in Theorem 1.1, but not in Theorem 1.3.
Indeed, there can be a significant difference between the exponents in
the bounds on the separator-number and the tree- or star-partition-width
in Theorem 1.3. Call this the “exponent-gap”. For example, while planar
graphs have separation-number Θ(n1/2), in Section 2 we show that Θ(n2/3)
is a tight bound on the star-partition-width and the tree-partition-width
of planar graphs. In this case, the exponent-gap is 2

3 − 1
2 = 1

6 .
This motivates the question: can the exponent-gap be reduced by con-

sidering products H ⊠ Km for graphs H that are more complicated than
stars or trees, but still with bounded tree-width or bounded tree-depth? In
particular, can the exponent-gap be 0?

Illingworth, Scott and Wood [58] achieved an exponent-gap of 0 for
minor-closed graph classes where H has bounded tree-width:

Theorem 1.4 ([58]).
(a) Every n-vertex planar graph is contained in H⊠Km, for some graph

H with tw(H) ⩽ 3, where m ⩽
√

8n.
(b) Every n-vertex graph of Euler genus g is contained in H ⊠Km, for

some graph H with tw(H) ⩽ 3, where m ⩽ 4
√

(g + 1)n.
(c) Every n-vertex Ks,t-minor-free graph is contained in H ⊠ Km for

some graph H with tw(H) ⩽ s, where m ⩽
√

(s − 1)(t − 1)n.
(d) Every n-vertex Kt-minor-free graph is contained in H ⊠ Km for

some graph H with tw(H) ⩽ t − 2, where m ⩽ 2
√

(t − 3)n.

In all these results the dependence on n is best possible because tw(H ⊠
Km) ⩽ (tw(H) + 1)m − 1 and the n1/2 × n1/2 grid has tree-width n1/2.

Can similar results be obtained for an arbitrary graph class with strongly
sublinear separation-number? The short answer is “almost”, as expressed
in the next theorem which shows that the exponent-gap can be made ar-
bitrarily small.

Theorem 1.5. — For δ, ϵ ∈ R with 0 < δ < ϵ < 1 there exists t ∈
N with the following property. Let G be any hereditary graph class with
sep(G) ⩽ cn1−ϵ for some constant c > 0. Then every n-vertex graph G ∈ G
is contained in H ⊠ Km for some graph H with td(H) ⩽ t, where m ⩽
c 2ϵ

2ϵ−1 n1−ϵ+δ.

In Theorem 1.5 the graph H has bounded tree-depth. This setting gen-
eralises bounded star-partition-width since a graph has tree-depth 2 if and
only if it is a star (plus isolated vertices).
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Theorem 1.5 is proved in Section 3, where we also prove a result (Theo-
rem 3.2) in which the exponent-gap tends to 0 as n → ∞, at the expense
of allowing td(H) to increase (arbitrarily slowly) with n. Another result
(Theorem 3.3) has exponent gap 0 and td(H) ∈ O(log log n).

In Section 4 we prove various lower bounds that show that many of the
results in Section 3 are best possible for multi-dimensional grid graphs.
In particular, we show that the dependence on δ in Theorem 1.5 is best
possible (Theorem 4.3), and that the above td(H) ∈ O(log log n) bound is
best possible (Theorem 4.4).

It is open whether exponent gap 0 and tw(H) ∈ O(1) can be achieved
simultaneously.

Open Problem 1.6. — For any hereditary graph class G with
separation-number sep(G) ∈ O(n1−ϵ), does there exist a constant c = c(G)
such that every n-vertex graph G ∈ G is contained in H ⊠ Km, where
tw(H) ⩽ c and m ∈ O(n1−ϵ)?

Theorem 1.4 solves Open Problem 1.6 for minor-closed classes with ϵ = 1
2 .

It may even be true that c in Open Problem 1.6 is a function of ϵ only, which
was recently proved for minor-closed classes by Distel, Dujmović, Epp-
stein, Hickingbotham, Joret, Micek, Morin, Seweryn and Wood [29], who
also gave improved tree-width bounds for K3,t-minor-free graphs, which
includes planar and graphs with bounded Euler genus.

Theorem 1.7 ([29]).
(a) Every n-vertex planar graph is contained in H⊠Km, where tw(H) ⩽

2 and m ∈ O(n1/2).
(b) Every n-vertex graph of Euler genus g is contained in H ⊠ Km,

where tw(H) ⩽ 2 and m ∈ O(gn1/2).
(c) Every n-vertex K3,t-minor-free graph is contained in H⊠Km, where

tw(H) ⩽ 2 and m ∈ O(tn1/2).
(d) Every n-vertex Kt-minor-free graph is contained in H ⊠Km, where

tw(H) ⩽ 4 and m ∈ Ot(n1/2).

Open Problem 1.6 has an affirmative answer with c = 1 if G has bounded
degree, since every graph G with treewidth less than k and maximum degree
∆ is contained in T ⊠ K18k∆ for some tree T (with maximum degree at
most 6∆) [32].

Section 6 presents several natural graph classes where there is an affirma-
tive answer to Open Problem 1.6, and several natural graph classes where
Open Problem 1.6 is unsolved.
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1.3. Bounded Treewidth Graphs

Our final contribution concerns the product structure of graphs of
bounded treewidth. Given that H has bounded tree-depth in Theorem 1.5,
it is natural to consider the following question: Given k, n, t ∈ N what is
the minimum value of m = m(k, n, t) such that every n-vertex graph with
treewidth k is a subgraph of H ⊠ Km for some graph H with td(H) ⩽ t.
We prove that m(k, n, t) ∈ Θ(n1/t) for fixed k and t. The following theorem
provides the upper bound.

Theorem 1.8. — For all t ∈ N and k, n ∈ N, every n-vertex graph G

with tw(G) ⩽ k is contained in H ⊠Km for some graph H with td(H) ⩽ t,
where m ⩽ (k + 1)1−1/tn1/t.

The proof of Theorem 1.8 is based on a separator lemma for graphs of
given treewidth that generalises (1.1) and is of independent interest (Theo-
rem 5.3). The lower bound, m(k, n, t) ∈ Ω(n1/(t+1)), follows by considering
the case when G is a path. Both these proofs are presented in Section 5.

Loosely speaking, Theorem 1.8 gives good bounds for graphs of bounded
treewidth (or very small treewidth as a function of n), whereas Theorem 1.5
(and the other results in Section 3) give better bounds in the strongly
sublinear treewidth setting.

2. Star Partitions

Recall Theorem 1.3, which shows that graph classes with strongly sub-
linear separation-number can be characterised via tree-partitions and star-
partitions.

Theorem 1.3. — The following are equivalent for any hereditary graph
class G:

(i) G has strongly sublinear separation-number,
(ii) G has strongly sublinear tree-partition-width,
(iii) G has strongly sublinear star-partition-width.

We now prove Theorem 1.3. Let (iv) be the statement that G has strongly
sublinear tree-width. It follows from the definitions that tpw(G) ⩽ spw(G)
for every graph G; thus (iii) ⇒ (ii). Seese [76] observed that tw(G) ⩽
2 tpw(G) − 1; thus (ii) ⇒ (iv). By Theorem 1.1, (iv) ⇒ (i).
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It remains to prove that (i) ⇒ (iii). Note that any graph G has spw(G) ⩽
k if and only if G has a set S of at most k vertices such that each component
of G−S has at most k vertices. We thus use the following foklore result(6) .

Lemma 2.1 ([49]). — Let G be any hereditary graph class with sep(G) ⩽
cn1−ϵ, for some c > 0 and ϵ ∈ (0, 1). Then for any α ∈ (0, 1) and any n-
vertex graph G ∈ G there exists S ⊆ V (G) of size at most c2ϵ

2ϵ−1 n1−αϵ such
that each component of G − S has at most nα vertices.

The next result follows from Lemma 2.1 with α = 1
1+ϵ (since 1 − αϵ =

1 − ϵ
1+ϵ = 1

1+ϵ ).

Corollary 2.2. — Let G be any hereditary graph class with sep(G) ⩽
cn1−ϵ, for some c > 0 and ϵ ∈ (0, 1). Then for every n-vertex graph G ∈ G
there exists S ⊆ V (G), such that S and each component of G − S has at
most max{ c2ϵ

2ϵ−1 , 1}n1/(1+ϵ) vertices, implying

spw(G) ⩽ max{ c 2ϵ

2ϵ−1 , 1} n1/(1+ϵ).

Corollary 2.2 shows that (i) ⇒ (iii) in Theorem 1.3, which completes the
proof of Theorem 1.3.

As a concrete example, if G is any hereditary graph class with sep(G) ∈
O(n1/2), then spw(G) ∈ O(n2/3). For example, for every n-vertex planar
graph G,

tpw(G) ⩽ spw(G) ∈ O(n2/3).

We now show this bound is tight. Consider a graph G with tpw(G) ⩽ k.
A proper 2-colouring of the underlying tree determines an improper 2-
colouring of G such that each monochromatic component has at most k

vertices. Linial, Matoušek, Sheffet and Tardos [65] described an infinite
class G of planar graphs, such that every 2-colouring of any n-vertex graph
in G has a monochromatic component of order Ω(n2/3). So the O(n2/3)
upper bound on the tree-partition-width of planar graphs is tight.

To conclude this section, we show that the bound on the star-partition-
width in Corollary 2.2 is tight for grid graphs. For any integer d ⩾ 2, let
Gd

n be the d-dimensional n1/d × · · · × n1/d grid graph (where n1/d ∈ N).
Our starting point is the following isoperimetric inequality by Bollobás

(6) Lemma 2.1 is proved by the following argument: initialise S := ∅, while there is a
component X of G − S with more than nα vertices, add a balanced separator in X to S,
and repeat until every component of G − S has at most nα vertices. The idea is present
in the work of Lipton and Tarjan [66, 67] for planar graphs, and in the work of Esperet
and Raymond [49] and Dvořák and Norin [46] for hereditary graph class with strongly
sublinear separators. See [82] for an explicit proof of Lemma 2.1.
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and Leader [15, Theorem 3]. For a graph G and A ⊆ V (G), let ∂(A) be the
number of edges in G between A and V (G) \ A.

Lemma 2.3 ([15]). — For any set A of vertices in Gd
n with |A| ⩽ n

2 ,

∂(A) ⩾ min{|A|1−1/rr n1/r−1/d : r ∈ {1, . . . , d}}.

Corollary 2.4. — For any set A of vertices in Gd
n with |A| ⩽ n

ed ,

∂(A) ⩾ d |A|1−1/d.

Proof. — By Lemma 2.3 it suffices to show that if |A| ⩽ n
ed and r ∈

{1, . . . , d}, then

(2.1) |A|1−1/rrn1/r−1/d ⩾ d|A|1−1/d.

Since (2.1) holds with equality when r = d, we may assume that r ̸= d. Let
c :=

( |A|
n

)1/d where 0 ⩽ c ⩽ 1, and let x := r
d where 0 < x < 1. Then (2.1)

is equivalent to xx/(1−x) ⩾ c. The function xx/(1−x) is decreasing when
x ∈ [0, 1), and limx→1 xx/(1−x) = 1

e . Thus (2.1) holds if c ⩽ 1
e ; that is, if

|A| ⩽ n
ed . □

Lemma 2.5. — If S is any set of at most n
2 vertices in Gd

n and q ⩽ n
ed

and each component of G − S has at most q vertices, then |S| ⩾ n
4q1/d .

Proof. — Let A1, . . . , Ar be the components of Gd
n −S. By Corollary 2.4

and since Gd
n has maximum degree 2d,

2d|S| ⩾
∑

i

∂(Ai) ⩾
∑

i

d|Ai|1−1/d ⩾
∑

i

d|Ai|q−1/d = dq−1/d(n − |S|)

⩾ 1
2 (dq−1/dn) .

The result follows. □

Now consider the star-partition-width, spw(Gd
n). If spw(Gd

n) = s then
Gd

n has a set S of at most s vertices such that each component of Gd
n − S

has at most s vertices. If s ⩽ n
ed , then s ⩾ n

4s1/d by Lemma 2.5, and thus
s ⩾ ( n

4 )d/(d+1). Hence spw(Gd
n) ⩾ ( n

4 )d/(d+1) when n ⩾ ed(d+1)

4d .
Let Gd be the class of all subgraphs of d-dimensional grid graphs. Then

sep(Gd) ⩽ cn1−1/d for some c = c(d) by a result of Miller et al. [69]. Thus
Corollary 2.2 with ϵ = 1

d proves spw(Gd) ⩽ max{ c 21/d

21/d−1 , 1} nd/(d+1), which
matches the above lower bound. That is, for fixed d,

spw(Gd) = Θ(nd/(d+1)).
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3. Bounded Tree-depth Partitions

This section shows that n-vertex graphs with strongly sublinear
separation-number are contained in H ⊠Km where td(H) is bounded or is
at most a slowly growing function of n, and m is strongly sublinear with
respect to n. All the results follow from the next lemma.

Lemma 3.1. — Let G be any hereditary graph class with separation-
number sep(G) ⩽ cn1−ϵ, for some c ⩾ 1 and ϵ ∈ (0, 1). Then for every
t ∈ N, every n-vertex graph G ∈ G is contained in H ⊠Km for some graph
H with td(H) ⩽ t, where m ⩽ c2ϵ

2ϵ−1 n(1−ϵ)/(1−ϵt).

Proof. — We proceed by induction on t. If t = 1 then the claim is
trivial—just take H = K1. Now assume that t ⩾ 2 and the result holds for
t − 1. Let α := (1 − ϵt−1)/(1 − ϵt) ∈ (0, 1) and γ := c2ϵ

2ϵ−1 . Note that

1 − αϵ = 1 − ϵ(1 − ϵt−1)
1 − ϵt

= 1 − ϵt − ϵ(1 − ϵt−1)
1 − ϵt

= 1 − ϵ

1 − ϵt
.

Let G be any n-vertex graph in G. By Lemma 2.1, there exists S ⊆ V (G)
of size at most

γn1−αϵ = γn(1−ϵ)/(1−ϵt)

such that each component of G−S has at most nα vertices. Say G1, . . . , Gk

are the components of G − S. Let ni := |V (Gi)| ⩽ nα. By induction, Gi is
contained in Hi ⊠ Kq for some graph Hi with td(Hi) ⩽ t − 1, where

q ⩽ γn
(1−ϵ)/(1−ϵt−1)
i ⩽ γnα(1−ϵ)/(1−ϵt−1) = γn(1−ϵ)/(1−ϵt).

So Hi is a subgraph of the closure of a rooted tree Ti of vertex-height
t − 1. Let T be obtained from the disjoint union of T1, . . . , Tk by adding
one root vertex r adjacent to the roots of T1, . . . , Tk. Let H be the closure
of T . So td(H) ⩽ t. By construction, G is contained in H ⊠ Km where
m ⩽ max{|S|, q} ⩽ γn(1−ϵ)/(1−ϵt), as desired. □

Note that Theorem 4.3 in Section 4 shows that the (1 − ϵ)/(1 − ϵt) term
in Lemma 3.1 is best possible whenever 1

ϵ is an integer at least 2.
Recall Theorem 1.5 from Section 1.

Theorem 1.5. — For δ, ϵ ∈ R with 0 < δ < ϵ < 1 there exists t ∈
N with the following property. Let G be any hereditary graph class with
sep(G) ⩽ cn1−ϵ for some constant c > 0. Then every n-vertex graph G ∈ G
is contained in H ⊠ Km for some graph H with td(H) ⩽ t, where m ⩽
c 2ϵ

2ϵ−1 n1−ϵ+δ.
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Proof. — Apply Lemma 3.1 with t := ⌈logϵ( δ
1−ϵ+δ )⌉. Note that ϵt(1 −

ϵ + δ) ⩽ δ, implying 1 − ϵ ⩽ (1 − ϵ) + δ − ϵt(1 − ϵ + δ) = (1 − ϵ + δ)(1 − ϵt).
Thus every n-vertex graph G ∈ G is contained in H ⊠ Km for some graph
H with td(H) ⩽ t, where m ⩽ c2ϵ

2ϵ−1 n(1−ϵ)/(1−ϵt) = c2ϵ

2ϵ−1 n1−ϵ+δ. □

The next two results allow td(H) to increase slowly with n.

Theorem 3.2. — Fix ϵ ∈ (0, 1). Let t : N → R+ be any function.
For any hereditary graph class G with sep(G) ⩽ cn1−ϵ for some constant
c > 0, every n-vertex graph G ∈ G is contained in H ⊠ Km for some
graph H with td(H) ⩽ ⌈t(n)⌉, where m ⩽ c 2ϵ

2ϵ−1 n1−ϵ+δ(n) and δ(n) :=
(1 − ϵ)

(
(1 − ϵt(n))−1 − 1

)
.

Proof. — Apply Lemma 3.1 with t := ⌈t(n)⌉. Note that δ(n) ⩾ (1 − ϵ) ×
( 1

1−ϵt − 1) = 1−ϵ
1−ϵt − (1 − ϵ), implying 1−ϵ

1−ϵt ⩽ 1 − ϵ + δ(n). Thus every
n-vertex graph G ∈ G is contained in H ⊠ Km for some graph H with
td(H) ⩽ ⌈t(n)⌉, where m ⩽ c 2ϵ

2ϵ−1 n(1−ϵ)/(1−ϵt) ⩽ c 2ϵ

2ϵ−1 n1−ϵ+δ(n). □

The novelty of Theorem 3.2 is that t(n) can be chosen to be any slow-
growing function, but the exponent-gap δ(n) goes to zero as n → ∞. The
next result with exponent-gap 0 follows from Theorem 3.2 by taking a
specific function h.

Theorem 3.3. — Fix ϵ ∈ (0, 1) and c > 0. For any hereditary graph
class G with sep(G) ⩽ cn1−ϵ, every n-vertex graph G ∈ G is contained
in H ⊠ Km for some graph H with td(H) ⩽

⌈ log(1+log n)
− log ϵ

⌉
, where m ⩽

2c
2ϵ−1 n1−ϵ.

Proof. — Let t(n) := log(1+log n)
− log ϵ = logϵ( 1

1+log n ). Thus ϵt(n) = 1
1+log n =

1 − log n
1+log n , implying (1 − ϵt(n))−1 − 1 = ( 1+log n

log n ) − 1 = 1
log n . Hence

δ(n) log n = (1−ϵ)
(
(1−ϵt(n))−1 −1

)
log n = 1−ϵ and nδ(n) = 21−ϵ. The re-

sult follows from Theorem 3.2 since m ⩽ c 2ϵ

2ϵ−1 n1−ϵ+δ(n) = c 2ϵ21−ϵ

2ϵ−1 n1−ϵ =
2c

2ϵ−1 n1−ϵ. □

4. Lower Bounds

This section proves lower bounds that show that several results in the
previous section are best possible. Recall that Gd

n is the d-dimensional
n1/d × · · · × n1/d grid graph.

Lemma 4.1. — Fix integers d, t ⩾ 2. Let G := Gd
n, let H be any graph

with td(H) ⩽ t, and let A ⊆ V (G) such that G[A] has an H-partition of
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width s where

(4.1) 2dt−1
⩽ s ⩽

(
n

36ed

)(d−1)dt−2/(dt−1−1)
.

Then
∂(A) ⩾ d

6 s−(dt−1−1)/((d−1)dt−1)|A| − 3ds.

Proof. — We proceed by induction on t (with d fixed). First suppose
that t = 2. Let R be the root part in the H-partition of G[A]. Thus |R| ⩽ s

and ∂(A − R) ⩽ ∂(A) + ∂(R) ⩽ ∂(A) + 2ds (since G has maximum degree
at most 2d). Let C be the vertex-set of a component of G[A] − R. Thus
|C| ⩽ s ⩽ n

ed and ∂(C) ⩾ d|C|1−1/d by Corollary 2.4. Summing over all
such C,

∂(A − R) =
∑

C

∂(C) ⩾
∑

C

d|C|1−1/d ⩾
∑

C

d|C|s−1/d = ds−1/d(|A| − |R|)

⩾ ds−1/d(|A| − s).

Thus

∂(A) ⩾ ∂(A − R) − 2ds ⩾ ds−1/d(|A| − s) − 2ds > d
6 s−1/d|A| − 3ds,

as claimed.
Now assume that t ⩾ 3 and the result holds for t−1. Let A ⊆ V (G) such

that G[A] has an H-partition of width s, for some graph H with td(H) ⩽ t.
Let R be the root part in the H-partition of G[A]. Thus |R| ⩽ s and

(4.2) ∂(A − R) ⩽ ∂(A) + ∂(R) ⩽ ∂(A) + 2ds.

Let C be the vertex-set of a component of G[A] − R. So G[C] has an
H ′-partition of width s, for some graph H ′ with td(H ′) ⩽ t − 1. Say C is
big if |C| ⩾ 36 s(dt−1−1)/((d−1)dt−2) and small otherwise.

First suppose that C is small. Then |C| ⩽ 36 s(dt−1−1)/((d−1)dt−2), which
is at most n

ed by the upper bound on s in Eq. (4.1). Thus Corollary 2.4 is
applicable, and

∂(C) ⩾ d|C|1−1/d ⩾ d
6 |C|

(
s(dt−1−1)/((d−1)dt−2))−1/d

= d
6 s−(dt−1−1)/((d−1)dt−1) |C|.

Now suppose that C is big. Since Eq. (4.1) holds for t, it also holds for
t − 1. Thus, by induction,

∂(C) ⩾ d
6 s−(dt−2−1)/((d−1)dt−2)|C| − 3ds ⩾ d

12 s−(dt−2−1)/((d−1)dt−2)|C|

⩾ d
6 s−(dt−1−1)/((d−1)dt−1) |C|,
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where the final inequality holds since s ⩾ 2dt−1 . Summing over all such
components,

∂(A − R) =
∑

C

∂(C) ⩾
∑

C

d
6 s−(dt−1−1)/((d−1)dt−1) |C|

= d
6 s−(dt−1−1)/((d−1)dt−1) (|A| − |R|)

⩾ d
6 s−(dt−1−1)/((d−1)dt−1) (|A| − s).

By Eq. (4.2),

∂(A) ⩾ ∂(A − R) − 2ds ⩾ d
6 s−(dt−1−1)/((d−1)dt−1) (|A| − s) − 2ds

⩾ d
6 s(dt−1−1)/((d−1)dt−1) |A| − 3ds,

as desired. □

Lemma 4.2. — Fix integers d, t ⩾ 2 and s ⩾ 5dt . Let G := Gd
n where

n ≫ d, t. Let H be any graph with td(H) ⩽ t, such that G has an H-
partition of width s. Then

s ⩾
(

n
12
)(d−1)dt−1/(dt−1)

.

Proof. — If s ⩾
(

n
36ed

)(d−1)dt−2/(dt−1−1) then s ⩾
(

n
12
)(d−1)dt−1/(dt−1)

for large enough n ≫ d, t, and we are done. Now assume that s ⩽(
n

36ed

)(d−1)dt−2/(dt−1−1), which is required below when applying Lemma 4.1.
Let M be the root part in the H-partition of G. Let A1, . . . , Ap be the

vertex-sets of the components of G − M .
First suppose that t = 2. Thus |M |, |A1|, . . . , |Ap| ⩽ s ⩽ n

ed . By Lem-
ma 2.5, s ⩾ |M | ⩾ n

4s1/d and 4s(d+1)/d ⩾ n and

s ⩾
(

n
4
)d/(d+1)

⩾
(

n
12
)(d−1)d/(d2−1)

,

as desired.
Now assume that t ⩾ 3. By assumption, each G[Ai] has an Hi-partition

of width at most s, for some graph Hi with td(Hi) ⩽ t − 1. By Lemma 4.1,
d
6 s−(dt−2−1)/((d−1)dt−2)|Ai| − 3ds ⩽ ∂(Ai) ⩽ ∂(M) ⩽ 2d|M | ⩽ 2ds,

implying

|Ai| ⩽ q := 30s1+(dt−2−1)/((d−1)dt−2) = 30s(dt−1−1)/((d−1)dt−2).

Since s ⩾ 5dt ,
30
12 ed ⩽ 5d ⩽ s1/dt−1

= s(dt−1)/((d−1)dt−1) − (dt−1−1)/((d−1)dt−2),

Innov. Graph Theory 2, 2025, pp. 191–222



204 Z. Dvořák & D. R. Wood

implying

30ed s(dt−1−1)/((d−1)dt−2) ⩽ 12 s(dt−1)/((d−1)dt−1).

We may assume the right-hand-side is less than n, otherwise we are done.
Thus

q = 30s(dt−1−1)/((d−1)dt−2) ⩽ n
ed .

Hence Corollary 2.4 is applicable to Ai, and

2ds ⩾ ∂(M) =
∑

i

∂(Ai) ⩾
∑

i

d|Ai|1−1/d ⩾
∑

i

d|Ai|q−1/d

= dq−1/d(n − |M |)

⩾ dq−1/d(n − s).

Therefore

n ⩽ 2sq1/d + s = 2s
(
30s(dt−1−1)/((d−1)dt−2))1/d + s

= 2 · 301/d s(dt−1)/((d−1)dt−1) + s

< 12s(dt−1)/((d−1)dt−1).

The result follows. □

We now drop the s ⩾ 5dt assumption in Lemma 4.2.

Theorem 4.3. — Fix integers d, t ⩾ 2. Let G := Gd
n where n ≫ d, t.

For any graph H with td(H) ⩽ t, if G has an H-partition of width s, then

s ⩾
(

n
12
)(d−1)dt−1/(dt−1)

.

Proof. — By Lemma 4.2 we may assume that s < 5dt . Then G has an
H-partition of width 5dt . By Lemma 4.2,

5dt

⩾
(

n
12
)(d−1)dt−1/(dt−1)

.

Since (d−1)dt−1/(dt−1) > 0, taking n ≫ d, t we obtain a contradiction. □

As mentioned earlier, subgraphs of d-dimensional grids are a heredi-
tary class with separation-number O(n1−1/d). The exponent of n in the
lower bound in Theorem 4.3 matches the corresponding upper bound in
Lemma 3.1 with ϵ = 1

d since

(1 − ϵ)/(1 − ϵt) = (1 − 1
d )/(1 − 1

dt ) = d−1
d · dt

dt−1 = (d−1)dt−1

dt−1 .

Thus Lemma 3.1 is best possible whenever 1
ϵ is an integer at least 2.

To conclude this section, we now show that the O(log log n) term in
Theorem 3.3 is best possible.
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Theorem 4.4. — Fix any integer d ⩾ 2. Assume that there is a function
t, such that for some c > 0, every d-dimensional grid graph Gd

n is contained
in H ⊠ Ks, for some graph H with td(H) ⩽ t(n), and where s ⩽ cn1−1/d.
Then t(n) ∈ Ω(log log n).

Proof. — Let G := Gd
n and t := t(n). By Observation 1.2, G has an H-

partition of width s = ⌊cn1−1/d⌋. If s ⩽ 5dt then cn1−1/d ⩽ 5dt + 1 and
t(n) ∈ Ω(log log n), as desired. Otherwise, s ⩾ 5dt , and by Lemma 4.2,

cn1−1/d ⩾ s ⩾
(

n
12
)(d−1)dt−1/(dt−1)

.

Thus

12c ⩾ c 12(d−1)dt−1/(dt−1) ⩾ n(d−1)dt−1/(dt−1)−1+1/d = n(d−1)/(d(dt−1)).

Thus (12c)d(dt−1)/(d−1) ⩾ n, and t(n) ∈ Ω(log log n), as desired. □

Note that Theorem 4.4 implies that the strengthening of Open Prob-
lem 1.6 with tree-width replaced by tree-depth is false.

5. Bounded Tree-width Graphs

This section considers H-partitions of graphs with bounded tree-width,
where H has bounded tree-depth. We start with star-partitions of trees.

Lemma 5.1. — For any p, q, n ∈ N with n ⩽ pq + p + q, any n-vertex
tree T has a set S of at most p vertices such that each component of T − S

has at most q vertices.

Proof. — We proceed by induction on p. The base case with p = 1 is
folklore. We include the proof for completeness. Orient each edge vw of
G from v to w if the component of T − vw containing v has at most ⌊ n

2 ⌋
vertices. Each edge is oriented by this rule. Since T is acyclic, there is a
vertex v in T with outdegree 0. So each component of T − v has at most
⌊ n

2 ⌋ ⩽ q vertices, and the result holds with S = {v}.
Now assume p ⩾ 2. Root T at an arbitrary vertex r. For each vertex v,

let Tv be the subtree of T rooted at v. For each leaf vertex v, let f(v) = 0.
For each non-leaf vertex v, let f(v) := maxw |V (Tw)| where the maximum
is taken over all children w of v. If f(r) ⩽ q then S = {r} satisfies the claim.
Now assume that f(r) ⩾ q+1. Let v be a vertex of T at maximum distance
from r such that f(v) ⩾ q + 1. This is well-defined since f(r) ⩾ q + 1.
By definition, |V (Tw)| ⩾ q + 1 for some child w of v, but f(w) ⩽ q. So
every subtree rooted at a child of w has at most q vertices. Let T ′ be the
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subtree of T obtained by deleting the subtree rooted at w. Thus |V (T ′)| =
n − |V (Tw)| ⩽ n − (q + 1) ⩽ pq + p + q − (q + 1) = (p − 1)q + (p − 1) + q. By
induction, T ′ has a set S′ of at most p−1 vertices such that each component
of T ′−S′ has at most q vertices. Let S := S′∪{w}. By construction, |S| ⩽ p

and each component of T − S has at most q vertices. □

Lemma 5.1 also follows from a Helly-type property stated in [75, (8.6)](7) .
We now show the bound in Lemma 5.1 is best possible for the n-vertex path
T . Say T has a set S of p vertices such that each component of T − S has
at most q vertices. Since T is a path, T − S has at most p + 1 components,
each with at most q vertices. Thus n ⩽ (p + 1)q + p.

To generalise Lemma 5.1 for graphs of given tree-width, we need the
following normalisation lemma(8) .

Lemma 5.2. — Every graph with tree-width k has a tree-decomposition
(Bx : x ∈ V (T )) such that:

(a) |Bx| = k + 1 for each x ∈ V (T ),
(b) for each edge xy ∈ E(T ), we have |Bx \ By| = 1 and |By \ Bx| = 1,
(c) |V (T )| = |V (G)| − k, and
(d) for any non-empty set S ⊆ V (T ), for each component T ′ of T − S,∣∣∣∣∣

( ⋃
x∈V (T ′)

Bx

)
\

( ⋃
x∈S

Bx

)∣∣∣∣∣ ⩽ |V (T ′)|.

Proof. — Since G has tree-width k, G has a tree-decomposition (Bx :
x ∈ V (T )) such that |Bx| ⩽ k + 1 for each x ∈ V (T ).

If |Bx| > |By| for some edge xy of T , then add one vertex from Bx \ By

to By, and repeat this step until |Bx| = |By| for each edge xy ∈ E(T ). Now
(a) is satisfied (since G has tree-width k).

If Bx = By for some edge xy ∈ E(T ), then contract xy into a new vertex
z with Bz := Bx. This operation maintains that |Bx| = k + 1 for each
x ∈ V (T ). Repeat this operation until Bx ̸= By for each edge xy ∈ E(T ).

Say |Bx \ By| ⩾ 2 for some edge xy ∈ E(T ). Thus |By \ Bx| ⩾ 2. Let
v ∈ Bx \ By and w ∈ By \ Bx. Delete the edge xy from T , and introduce a

(7) Statement (8.6) in [75] says that for any family F of subtees of a tree T , for any
integer k ⩾ 0, either (i) there are k vertex-disjoint element of F , or (ii) there is a subset
X ⊆ V (T ) with |X| < k that intersects every element of F . See [58, Lemma 9] for a
proof of this statement. Under the assumptions of Lemma 5.1, apply this result where F
is the family of subtrees of T with at least q +1 vertices, and k := p+1. If (i) holds, then
T has p+1 disjoint subtrees, each with q +1 vertices, implying |V (T )| ⩾ (p+1)(q +1) =
pq + p + q + 1, which is a contradiction. Outcome (ii) gives the desired set, since T − X
contains no subtree of T on at least q + 1 vertices.
(8) Conditions (a), (b) and (c) in Lemma 5.2 are well-known. Condition (d) may be new.
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new vertex z to T only adjacent to x and y, where Bz := (Bx \ {v}) ∪ {w}.
This operation maintains property (a) and still Bx ̸= By for each edge
xy ∈ E(T ). Repeat this operation until (b) is satisfied.

We now prove (c). Let r be any vertex of T . Define a function f : V (T −
r) → V (G) \ Br, where for each y ∈ V (T − r), if p is the neighbour of
y in T closest to r, then f(y) is the vertex in By \ Bp. By (b), f is a
bijection. Thus |V (G)\Br| = |V (T −r)| and |V (G)| = |Br|+ |V (G)\Br| =
(k + 1) + (|V (T )| − 1) = k + |V (T )|. This proves (c).

We now prove (d). Let S be a non-empty subset of V (T ). Let T ′ be
a component of T − S. Let V ′ := (

⋃
y∈V (T ′) By) \ (

⋃
x∈S Bx). There is a

vertex x ∈ S adjacent to some vertex in T ′. For each y ∈ V (T ′), if p is the
neighbour of y in T closest to x, then let vy be the vertex in By \ Bp. Then
vy ̸= vz for all distinct y, z ∈ V (T ′). Each vertex of V ′ equals vy for some
y ∈ V (T ′). Thus |V ′| ⩽ |V (T ′)|. This proves (d). □

Theorem 5.3. — Let p, q, k, n ∈ N with n ⩽
⌊

p
k+1
⌋
(q + 1) + q + k and

p ⩾ k + 1. Then any n-vertex graph G with tw(G) ⩽ k has a set S of p

vertices such that each component of G − S has at most q vertices.

Proof. — Let (Bx : x ∈ V (T )) be a tree-decomposition of G satisfying
Lemma 5.2. Let p′ :=

⌊
p

k+1
⌋
. Thus p′ ⩾ 1 and p′(q+1)+q ⩾ n−k = |V (T )|

by Lemma 5.2(c). By Lemma 5.1, T has a set S0 of p′ vertices such that
each component of T − S0 has at most q vertices. Let S :=

⋃
x∈S0

Bx. So
|S| ⩽ (k + 1)|S0| ⩽ (k + 1)p′ ⩽ p. For each component G′ of G − S there
is a subtree T ′ of T − S0 such that V (G′) ⊆ (

⋃
x∈V (T ′) Bx) \ S, implying

|V (G′)| ⩽ |V (T ′)| ⩽ q by Lemma 5.2(d). □

Theorem 5.3 with p = k + 1 and q = ⌈ n−k−1
2 ⌉ says that every graph

G with tw(G) ⩽ k has a set S of k + 1 vertices such that each compo-
nent of G − S has at most q ⩽ n−k

2 vertices, which implies Eq. (1.1) by
Robertson and Seymour [74, (2.6)]. Thus Theorem 5.3 generalises the re-
sult of Robertson and Seymour [74] and is of independent interest. Note
that Thomassen [78, Proposition 2.1] proved a similar, but less precise,
statement to Theorem 5.3.

We now show that Theorem 5.3 is roughly best possible for the k-th
power of the path, P k

n . This graph has vertex-set {v1, . . . , vn} where vivj is
an edge if and only if |i − j| ∈ {1, . . . , k}. Note that tw(P k

n ) = pw(P k
n ) = k.

Consider the graph P k
n for any integer n > pq

k +p+ q. Let S be any set of p

vertices in P k
n , and define a block to be a maximal set of vertices in S that

are consecutive with respect to Pn. Let b be the number of blocks of size at
least k. So p ⩾ bk and the number of components of P k

n −S is at most b+1
(since if B is a block of size at most k − 1, then the vertices immediately
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before and after B are adjacent in P k
n ). Since n > pq

k + p + q ⩾ (b + 1)q + p,
it follows that P k

n − S has a component with more than q vertices. Hence
the bound in Theorem 5.3 cannot be improved to n ⩽ pq

k + p + q + 1.
Theorem 5.3 with p = q = ⌈

√
(tw(G) + 1)n⌉ implies that for every n-

vertex graph G,

tpw(G) ⩽ spw(G) ⩽
⌈√

(tw(G) + 1)n
⌉
.

The second inequality here is essentially best possible since the argument
above shows that spw(P k

n ) = (1 + o(1))
√

kn. We now show that the same
upper bound on tpw(G) is also essentially best possible. Let k ⩾ 2 and
let G be the graph obtained from P k−1

n by adding one dominant vertex.
So tw(G) = k. In any tree-partition of G, since G has a dominant vertex,
the tree is a star. Since P k−1

n is a subgraph of G, we have tpw(G) ⩾
(1 − o(1))

√
(k − 1)n.

We now set out to generalise Theorem 5.3 for H-partitions, where H has
bounded tree-depth. We need the following analogue of Lemma 5.1 where
q is allowed to be real.

Lemma 5.4. — For any p, n ∈ N and q ∈ R+ with n ⩽ q(p + 1), any
n-vertex tree T has a set S of at most p vertices such that each component
of T − S has at most q vertices.

Proof. — We proceed by induction on p. The base case with p = 1 is
identical to the p = 1 case of Lemma 5.1. Now assume that p ⩾ 2. Root
T at an arbitrary vertex r. For each vertex v, let Tv be the subtree of T

rooted at v. For each leaf vertex v, let f(v) = 0. For each non-leaf vertex
v, let f(v) := maxw |V (Tw)| where the maximum is taken over all children
w of v. If f(r) ⩽ q then S = {r} satisfies the claim. Now assume that
f(r) > q. Let v be a vertex of T at maximum distance from r such that
f(v) > q. This is well-defined since f(r) > q. By definition, |V (Tw)| > q

for some child w of v, but f(w) ⩽ q. So every subtree rooted at a child of
w has at most q vertices. Let T ′ be the subtree of T obtained by deleting
the subtree rooted at w. Thus

|V (T ′)| = n − |V (Tw)| < n − q ⩽ q(p + 1) − q = qp.

By induction, T ′ has a set S′ of at most p − 1 vertices such that each com-
ponent of T ′ −S′ has at most q vertices. Let S := S′ ∪{w}. By construction,
|S| ⩽ p and each component of T − S has at most q vertices. □

We have the following analogue of Theorem 5.3 where p and q are both
allowed to be real.
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Lemma 5.5. — Let k, n ∈ N and p, q ∈ R>0 with n(k + 1) ⩽ pq and
p ⩾ k + 1. Then any n-vertex graph G with tw(G) ⩽ k has a set S of at
most p vertices such that each component of G − S has at most q vertices.

Proof. — Let (Bx : x ∈ V (T )) be a tree-decomposition of G satisfying
Lemma 5.2. Let p′ := ⌊ p

k+1 ⌋. Thus p′ ∈ N and (p′ + 1)q ⩾ p
k+1 q ⩾ n. By

Lemma 5.4, T has a set S0 of at most p′ vertices such that each component
of T − S0 has at most q vertices. Let S :=

⋃
x∈S0

Bx. So |S| ⩽ (k + 1)|S0| ⩽
(k+1)p′ ⩽ p. For each component G′ of G−S there is a subtree T ′ of T −S0
such that V (G′) ⊆ (

⋃
x∈V (T ′) Bx) \ S, implying |V (G′)| ⩽ |V (T ′)| ⩽ q by

Lemma 5.2(d). □

We now reach the main result of this section (where the case t = 2 in
Theorem 1.8 is roughly equivalent to Theorem 5.3).

Theorem 1.8. — For all t ∈ N and k, n ∈ N, every n-vertex graph G

with tw(G) ⩽ k is contained in H ⊠Km for some graph H with td(H) ⩽ t,
where m ⩽ (k + 1)1−1/tn1/t.

Proof. — We proceed by induction on t. With t = 1, the claim holds
with H = K1 and m = n. Now assume t ⩾ 2 and the claim holds for
t − 1. Without loss of generality, we can assume that tw(G) = k, and thus
n ⩾ k + 1. Let p := (k + 1)1−1/tn1/t ⩾ k + 1 and q := (k + 1)1/tn1−1/t. So
n(k + 1) = pq. By Lemma 5.5, there is a set S of at most p vertices such
that each component of G − S has at most q vertices. Let G1, . . . , Gc be
the components of G − S. Each Gi has treewidth at most k. By induction,
Gi is contained in Hi ⊠ Km′ for some graph Hi with td(Hi) ⩽ t − 1 and
m′ ⩽ (k + 1)(t−2)/(t−1)q1/(t−1) = (k + 1)1−1/tn1/t. So Hi is a subgraph of
the closure of a rooted tree Ti of vertex-height at most t − 1. Let T be
the rooted tree obtained from the disjoint union of T1, . . . , Tc by adding
a root vertex r adjacent to the root of each Ti. So td(H) ⩽ t. Let S

be the part associated with r. Hence G is contained in H ⊠ Km where
m ⩽ max{|S|, m′} ⩽ (k + 1)1−1/tn1/t. □

We now show that the dependence on n in Theorem 1.8 is best possible.
In particular, we show that if the n-vertex path is contained in H ⊠Km for
some graph H with td(H) ⩽ t, then m ⩾ Ω(n1/t) for fixed t. We proceed
by induction on t ⩾ 1 with the following hypothesis: if the n-vertex path P

is contained in H ⊠Km for some graph H with td(H) ⩽ t, then n ⩽ (2m)t.
If m = 1 then this says that td(Pn) ⩾ log n, which holds [71]. Now assume
that m ⩾ 2. In the base case, if t = 1 then H = K1 and n ⩽ m as desired.
Now assume that t ⩾ 2, and the n-vertex path P is contained in H ⊠ Km

for some graph H with td(H) ⩽ t. Let S be the set of at most m vertices of
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G associated with the root vertex r of H. Since P − S has at most |S| + 1
components, some sub-path P ′ of P − S has n′ ⩾ n−|S|

|S|+1 ⩾ n−m
m+1 vertices.

If n−m
m+1 < n

2m , then n < 2m2

m−1 < (2m)2 ⩽ (2m)t, as desired. Hence, suppose
that n′ ⩾ n−m

m+1 ⩾ n
2m . Since P ′ is connected, P ′ is contained in H ′ ⊠ Km,

where H ′ is some component of H − r, which implies td(H ′) ⩽ t − 1. By
induction n

2m ⩽ n′ ⩽ (2m)t−1. Hence n ⩽ (2m)t, as desired.

6. Regarding Open Problem 1.6

This section presents several results related to Open Problem 1.6. First
we describe two methods, shallow minors and weighted separators, that can
be used to show that various graph classes satisfy Open Problem 1.6. We
then give examples of graphs that highlight the difficulty of Open Prob-
lem 1.6. We conclude the paper by presenting several interesting graph
classes for which Open Problem 1.6 is unsolved.

6.1. Using Shallow Minors

For any integer r ⩾ 0, a graph H is an r-shallow minor of a graph G

if H can be obtained from G by contracting pairwise-disjoint subgraphs of
G, each with radius at most r, and then taking a subgraph. Let ∇r(G) be
the maximum average degree of an r-shallow minor of G. Shallow minors
are helpful for attacking Open Problem 1.6. Hickingbotham and Wood [57]
proved the following, where ∆(G) is the maximum degree of G.

Lemma 6.1 ([57]). — For any r ∈ N0 and ℓ, t ∈ N, for any graphs H

and L where tw(H) ⩽ t and ∆(Lr) ⩽ k, if a graph G is an r-shallow minor
of H ⊠L⊠Kℓ, then G is contained in J ⊠L2r+1 ⊠Kℓ(k+1) for some graph
J with tw(J) ⩽

(2r+1+t
t

)
− 1.

Lemma 6.1 with L = K1 and k = 0 implies:

Corollary 6.2. — For any graph H with tw(H) ⩽ t, for any r ∈ N0
and ℓ ∈ N, if a graph G is an r-shallow minor of H⊠Kℓ, then G is contained
in J ⊠ Kℓ for some graph J with tw(J) ⩽

(2r+1+t
t

)
− 1.

Corollary 6.2 essentially says that shallow minors of graphs that sat-
isfy Open Problem 1.6 also satisfy Open Problem 1.6. We now give two
examples of this approach.
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A graph G is (g, k)-planar if there is a drawing of G in a surface of Euler
genus g with at most k crossings on each edge (assuming no three edges
cross at a single point).

Proposition 6.3. — Every n-vertex (g, k)-planar graph G is contained
in L ⊠ Kℓ for some graph L with tw(L) ⩽

(
k+5

3
)

− 1, where ℓ ⩽

8
√

(g + 1)(1 + k3/2dg)n and dg := max{3, 1
4 (5 +

√
24g + 1)}.

Proof. — Theorem 1.4(b) establishes the k = 0 case. Now assume that
k ⩾ 1. Fix a drawing of G in a surface of Euler genus g with at most
k crossings on each edge. Let C be the total number of crossings. Let
m := |E(G)|. So C ⩽ k

2 m. Ossona de Mendez, Oum and Wood [68,
Lemma 4.5] proved the following generalisation of the Crossing Lemma:
if m > 2dgn then C ⩾ m3

8(dgn)2 . Assume for the time being that m > 2dgn.
Thus m3

8(dgn)2 ⩽ C ⩽ k
2 m, implying m2 ⩽ 4k(dgn)2 and m ⩽ 2

√
kdgn.

Thus m ⩽ max{2dg, 2
√

kdg}n = 2
√

kdgn. Hence C ⩽ k
2 m ⩽ k3/2dgn.

Hickingbotham and Wood [57] showed that G is a ⌈ k
2 ⌉-shallow minor of

H ⊠K2, where H is the graph of Euler genus g obtained from G by adding
a vertex at each crossing point. Hence |V (H)| ⩽ n + C < (1 + k3/2dg)n.
By Theorem 1.4(b), H is contained in J ⊠ Kℓ′ , for some graph J with
tw(J) ⩽ 3, where ℓ′ ⩽ 4

√
(g + 1)|V (H)| ⩽ 4

√
(g + 1)(1 + k3/2dg)n. Hence

G is a ⌈ k
2 ⌉-shallow minor of J ⊠ K2ℓ′ . By Corollary 6.2 with t = 3 and

r = ⌈ k
2 ⌉, we have that G is contained in L ⊠ K2ℓ′ for some graph L with

tw(L) ⩽
(

k+5
3
)

− 1. □

Here is a second example. A graph G is fan-planar if there is a drawing
of G in the plane such that for each edge e ∈ E(G) the edges that cross
e have a common end-vertex and they cross e from the same side (when
directed away from their common end-vertex) [6, 60].

Corollary 6.4. — Every n-vertex fan-planar graph G is contained in
J ⊠ Km where tw(J) ⩽ 19 and m < 29

√
n.

Proof. — Kaufmann and Ueckerdt [60] proved that G has less than 5n

edges. Hickingbotham and Wood [57] showed that G is a 1-shallow minor of
H ⊠ K3 for some planar graph H with |V (H)| ⩽ |V (G)| + 2|E(G)| < 11n.
By Theorem 1.4(b), H is contained in J ⊠ Km′ , for some graph J with
tw(J) ⩽ 3, where m′ ⩽ 2

√
2|V (H)| ⩽ 2

√
22n < 29

3
√

n. Thus G is a 1-
shallow minor of J ⊠ K3m′ . By Corollary 6.2 with t = 3, G is contained in
J ⊠ K3m′ for some graph J with tw(J) ⩽

(6
3
)

− 1 = 19. □
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6.2. Using Weighted Separators

The following definition and lemma provides another way to show that
various graph classes satisfy Open Problem 1.6. A graph J is (n, m)-
separable if for every vertex-weighting of J with non-negative real-valued
weights and with total weight n, there is a set S ⊆ V (J) with total weight
m, such that each component of J − S has at most m vertices. There are
numerous results about weighted separators in the literature, but most of
these consider the total weight of each component of J − S instead of the
weight of S itself. Such considerations are studied in depth by Dvořák [43].

Lemma 6.5. — For any graph H and any (n, m)-separable graph J , if
G is any n-vertex graph contained in H ⊠J , then G is contained in L⊠Km

for some graph L with tw(L) ⩽ tw(H) + 1.

Proof. — We may assume that G is a subgraph of H ⊠J . So each vertex
of G is of the form (x, y) where x ∈ V (H) and y ∈ V (J). Weight each
vertex y of J by the number of vertices x ∈ V (H) such that (x, y) is in
G. So the total weight is n. By assumption, there is a set S ⊆ V (J) with
total weight m, where each component of J −S has at most m vertices. Let
J1, . . . , Jt be the components of J − S. Let H1, . . . , Ht be disjoint copies of
H. Let L be obtained from H1 ∪ · · · ∪ Ht by adding one dominant vertex z.
Note that tw(L) ⩽ tw(H) + 1. For each vertex x of H, let xi be the copy
of x in Hi.

We now define a partition of V (G) indexed by V (L). Let Vz := {(x, y) ∈
V (G) : x ∈ V (H), y ∈ S}. So |Vz| = weight(S) ⩽ m. For each vertex xi

of L − z, let Vxi
:= {(x, y) ∈ V (G) : y ∈ V (Ji)}. So |Vxi

| ⩽ |V (Ji)| ⩽ m.
Let P := {Vz} ∪ {Vxi : x ∈ V (L), i ∈ {1, . . . , t}}. By construction, P is a
partition of V (G), and each part of P has size at most m.

We now verify that P is an L-partition of G. Consider an edge vv′ of G.
The goal is to show that vv′ “maps” to a vertex or edge of L. If v ∈ Vz or
v′ ∈ Vz then vv′ maps to a vertex or edge of L (since z is dominant in L).
Otherwise, v ∈ Vxi and v′ ∈ Vx′

j
for some x, x′ ∈ V (H). By the definition

of Vxi
, we have v = (x, y) for some y ∈ V (Ji). Similarly, v′ = (x′, y′) for

some y′ ∈ V (Jj). Since vv′ ∈ E(G), we have x = x′ or xx′ ∈ E(H), and
y = y′ or yy′ ∈ E(J − S). If yy′ ∈ E(J − S), then y and y′ are in the same
component of J − S, implying i = j. If y = y′ then i = j as well. In both
cases, xi = x′

j or xix
′
j ∈ E(L). Hence, vv′ maps to a vertex or edge of L.

This shows that P is an L-partition of G with width at most m. By
Observation 1.2, G is contained in L ⊠ Km. □
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Note that Lemma 6.5 holds even when J is only (n, m)-separable with
integer-valued weights. Our goal now is to find graphs that are (n, m)-
separable where m ∈ O(n1−ϵ).

Lemma 6.6. — For every path P and c, n ∈ N, the graph G := P ⊠ Kc

is (n,
√

cn)-separable.

Proof. — Say P = (v1, v2, . . . ) and V (Kc) = {1, . . . , c}. Assume the
vertices of G are assigned non-negative weights, with total weight n. Let
m := ⌈

√
n/c⌉. For i ∈ {1, . . . , m}, let Si := {(vj , ℓ) : j ≡ i (mod m), ℓ ∈

{1, . . . , c}}. So S1, . . . , Sm is partition of V (G). Thus Si⋆ has total weight at
most n

m for some i⋆ ∈ {1, . . . , m}. Each component of G − Si⋆ has at most
c(m−1) vertices. The result follows since n

m ⩽
√

cn and c(m−1) <
√

cn. □

Lemmata 6.5 and 6.6 together imply:

Lemma 6.7. — For any graph H, path P and c ∈ N, if G is any n-vertex
graph contained in H ⊠ P ⊠ Kc, then G is contained in L ⊠ Km for some
graph L with tw(L) ⩽ tw(H) + 1, where m ⩽

√
cn.

Several recent results show that certain graphs G are contained in H ⊠
P ⊠Kc, for some path P and graph H with bounded treewidth [30, 38, 41,
57, 58, 79]. In all these cases, Lemma 6.7 is applicable, implying that G is
contained in L ⊠ KO(

√
n), for some graph L with bounded tree-width.

We give one example: map graphs. Start with a graph G embedded
without crossings in a surface of Euler genus g, with each face labelled
a “nation” or a “lake”, where each vertex of G is incident with at most d

nations. Let M be the graph whose vertices are the nations of G, where
two vertices are adjacent in G if the corresponding faces in G share a
vertex. Then M is called a (g, d)-map graph. Since the graphs of Euler
genus g are precisely the (g, 3)-map graphs [35], map graphs are a natural
generalisation of graphs embeddable in surfaces. Distel, Hickingbotham,
Huynh and Wood [30] proved that any (g, d)-map graph is contained in
H ⊠ P ⊠ Kℓ for some planar graph H with treewidth 3 and for some path
P , where ℓ = max{2g⌊ d

2 ⌋, d + 3⌊ d
2 ⌋ − 3}. The next result thus follows from

Lemma 6.7.

Proposition 6.8. — Every n-vertex (g, d)-map graph G is contained
in H ⊠ Km for some apex graph H with tw(H) ⩽ 4, where m ⩽

√
ℓn and

ℓ := max{2g⌊ d
2 ⌋, d + 3⌊ d

2 ⌋ − 3}.

Dujmović, Eppstein and Wood [35] showed that n-vertex (g, d)-map
graphs have separation-number Θ(

√
(g + 1)(d + 1)n). Thus Proposition 6.8

gives another example of a graph class with separation-number cn1−ϵ,
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where tw(H) is independent of c in the corresponding product structure
theorem. (Compare with the discussion after Open Problem 1.6.)

Distel, Hickingbotham, Seweryn and Wood [31] showed that every (g, k)-
planar graph G is contained in H ⊠ P ⊠ Kc(g,k) for some graph H with
tw(H) ⩽ 963 922 179. Thus Lemma 6.7 implies:

Corollary 6.9. — Every n-vertex (g, k)-planar graph G is contained
in L ⊠ Km for some graph L with tw(L) ⩽ 963 922 180, where m ⩽√

c(g, k)n.

Motivated by Lemma 6.5, we give three more examples of (n, m)-separ-
able graphs. The first is a multi-dimensional generalisation of Lemma 6.6.

Proposition 6.10. — For all paths P1, . . . , Pd and c, n ∈ N, the graph
G := P1 ⊠ · · · ⊠ Pd ⊠ Kc is (n, (dn)d/(d+1)c1/(d+1))-separable.

Proof. — Say Pi = (1, 2, . . . ) and V (Kc) = {1, . . . , c}. Assume the ver-
tices of G are assigned non-negative weights, with total weight n. Let
m := ⌈(dn/c)1/(d+1)⌉. For j ∈ {1, . . . , m}, let Sj be the set of all vertices
(x1, . . . , xd, ℓ) in G where xi ≡ j (mod m) for some i ∈ {1, . . . , d}. Each
vertex of G is in at least one and in at most d such sets. Thus, the total
weight of S1, . . . , Sm is at most dn. Thus Sj⋆ has total weight at most dn

m for
some j⋆ ∈ {1, . . . , m}. Each component of G−Sj⋆ has at most c(m−1)d ver-
tices. The result follows since dn

m ⩽ dn/(dn/c)1/(d+1) = (dn)d/(d+1)c1/(d+1)

and c(m − 1)d ⩽ c(dn/c)d/(d+1) = (dn)d/(d+1)c1/(d+1) □

Now consider trees.

Proposition 6.11. — Every n-vertex tree T with maximum degree
∆ ⩾ 3 is

(
n, (1+o(1))n

log∆−1 n

)
-separable.

Proof. — Assume the vertices of T are assigned non-negative weights,
with total weight n. In this proof all logs are base ∆ − 1. Let m := ⌈log n −
log log n⌉ ⩾ 2. Root T at a leaf vertex r. So each vertex has at most
∆ − 1 children. For j ∈ {1, . . . , m}, let Vj := {v ∈ V (T ) : distT (v, r) ≡ j

(mod m)}. Thus V1, . . . , Vm is a partition of V (T ). There exists j⋆ such
that Vj⋆ has weight at most n

m . In T − Vj⋆ , each component has radius
at most m − 2, so the number of vertices is at most

∑m−2
i=0 (∆ − 1)i =

((∆ − 1)m−1 − 1)/(∆ − 2) < (∆ − 1)m−1. The result follows since n
m ⩽

n
log n−log log n ⩽ (1+o(1))n

log n and (∆−1)m−1 < (∆−1)log n−log log n = n
log n . □

To get the (n, o(n))-separable result in Proposition 6.11, the bounded
degree assumption is necessary. Suppose that for all n every star T is (n, m)-
separable where m < n

3 . Let T be the star with p leaves. Let r be the centre
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vertex of T . Assign each leaf a weight of 1 and assign r a weight of p
2 . The

total weight is n := 3p
2 . So for some m < n

3 = p
2 there is a set S of vertices

in T with weight at most m such that each component of T − S has at
most m vertices. Since r has weight p

2 > m, we have r ̸∈ S. So every vertex
in S is a leaf, each of which has weight 1. So |S| ⩽ m. Thus T − S is a star
with at least p − m > m leaves, which is a contradiction. Hence m ⩾ n

3 .
Proposition 6.11 generalises as follows.

Proposition 6.12. — For all ∆, k ∈ N there exists α > 0 such that
every graph G with maximum degree ∆ and treewidth k is

(
n, αn

log n

)
-

separable.

Proof. — Let c := 18(k + 1)∆. Distel and Wood [32] proved that G is
contained in T ⊠ Kc for some tree T with maximum degree at most 6∆.
Observe that if H is any (n, m)-separable graph and c ∈ N, then H ⊠Kc is
(n, cm)-separable. By Proposition 6.11, T ⊠Kc is

(
n, c(1+o(1))n

log6∆−1 n

)
-separable.

Observe that if H is any (n, m)-separable graph, then every subgraph of H

is (n, m)-separable. Thus G is
(

n, c(1+o(1))n
log6∆−1 n

)
-separable. □

6.3. Bad News

We now present a result that highlights the difficulty of Open Prob-
lem 1.6. For simplicity, we focus on the ϵ = 1

2 case. Proposition 6.13 below
shows there are n-vertex graphs G with td(G) ⩽

√
n such that G is con-

tained in no graph H ⊠ Km with m ∈ O(
√

n) and tw(H) bounded.

Proposition 6.13. — For any c ∈ N there exist infinitely many n ∈ N
for which there is an n-vertex graph G with td(G) ⩽

√
n such that for

any graph H, if G is contained in H ⊠ Km with m ⩽ c
√

n, then ω(H) ⩾
log n

4 log(c log n) .

Proof. — Fix any integer ℓ ⩾ 2. Let d := cℓ2 and h := cℓ−1ℓ2ℓ−4. Note
that h, ℓ ∈ N.

For j ∈ {1, . . . , ℓ}, let Tj be the complete d-ary tree of vertex-height j,
and let T ′

j be the (h − 1)-subdivision of Tj . Consider T ′
1 ⊆ T ′

2 ⊆ · · · ⊆ T ′
ℓ

with a common root vertex r.

Claim. — For every partition P of V (T ′
j) with parts of size at most

hd−1
ℓ−1 there exists a root–leaf path in T ′

j intersecting at least j parts of P.

Innov. Graph Theory 2, 2025, pp. 191–222



216 Z. Dvořák & D. R. Wood

Proof. — We proceed by induction on j. Since |V (T ′
1)| = 1 the j = 1

case is trivial. Assume the j −1 case holds. Let P be any partition of V (T ′
j)

with parts of size at most hd−1
ℓ−1 . By induction, there is a leaf v of T ′

j−1 such
that the vr-path in T ′

j−1 intersects at least j − 1 parts P1, . . . , Pj−1 of P.
Let X be the set of descendants of v. If X ⊆ P1 ∪ · · · ∪ Pj−1 then

hd = |X| ⩽ |P1 ∪ · · · ∪ Pj−1| ⩽ (j − 1) hd−1
ℓ−1 ⩽ hd − 1,

which is a contradiction. Thus there is a vertex x ∈ X \ (P1 ∪ · · · ∪ Pj−1).
Let y be any leaf-descendent of x. Thus, the yr-path in T ′

j intersects at
least j parts of P, as desired. □

Let G be the closure of T ′
ℓ . Let

n := |V (G)| = h( d
d−1 )(dℓ−1 − 1) + 1.

We need the following lower bound on n:

n ⩾ hdℓ−1 = cℓ−1ℓ2ℓ−4(cℓ2)ℓ−1 = c2ℓ−2ℓ4ℓ−6.(6.1)

And we need the following upper bound on n:

n(ℓ − 1)2 = (h( d
d−1 )(dℓ−1 − 1) + 1)(ℓ − 1)2

⩽ h( d
d−1 )(dℓ−1)(ℓ − 1)2

< hdℓ−1ℓ2

= (cℓ−1ℓ2ℓ−4)d2(cℓ2)ℓ−3ℓ2

= c2ℓ−4d2ℓ4ℓ−8.(6.2)

The vertex-height of T ′
ℓ equals h(ℓ − 1) + 1. By (6.1),

td(G) = h(ℓ − 1) + 1 ⩽ hℓ = cℓ−1ℓ2ℓ−3 ⩽
√

n.

Assume that G is contained in H ⊠ Km for some graph H and integer
m ⩽ c

√
n. By (6.2),

m(ℓ − 1) ⩽ c
√

n(ℓ − 1) < cℓ−1ℓ2ℓ−4d = hd.

Thus m ⩽ hd−1
ℓ−1 . By Observation 1.2, there is an H-partition of G with

width at most hd−1
ℓ−1 . By the claim, there exists a root–leaf path in T ′

ℓ

intersecting at least ℓ parts of P. These ℓ parts form a clique in H. Thus
ω(H) ⩾ ℓ. By Eq. (6.2), n < c2ℓℓ4ℓ, which implies ω(H) ⩾ ℓ ⩾ log n

4 log(c log n) ,
as desired. □

Proposition 6.13 is not a negative answer to Open Problem 1.6 since G is
a single graph, not a hereditary class. Indeed, the graphs in Proposition 6.13
have unbounded complete subgraphs, and therefore are in no hereditary
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class with strongly sublinear separation-number. This result can be in-
terpreted as follows: A natural strengthening of Open Problem 1.6 (with
ϵ = 1

2 ) says that every n-vertex graph G with td(G) ∈ O(
√

n) is contained
in H ⊠ Km, for some graph H with O(1) treewidth, where m ∈ O(

√
n).

Proposition 6.13 says this strengthening is false. So it is essential that G is
a hereditary class in Open Problem 1.6.

6.4. Future Directions

We conclude by listing several unsolved special cases of Open Problem 1.6
of particular interest:

• Does Open Problem 1.6 hold for touching graphs of 3-D spheres,
which have O(n2/3) separation-number [69]?

• Eppstein and Gupta [50] defined a graph G to be k-crossing-
degenerate if G has a drawing in the plane such that the associated
crossing graph is k-degenerate. They showed that such graphs have
O(k3/4n1/2) separation-number. It is open whether Open Prob-
lem 1.6 holds for k-crossing-degenerate graphs. The same question
applies for k-gap-planar graphs [4].

• Does Open Problem 1.6 hold for string graphs on m edges, which
have O(m1/2) separation-number [63, 64]?

• Does Open Problem 1.6 hold for graphs with layered tree-width k,
which have O(

√
kn) separation-number [40]?

• See [45, 77] for many geometric intersection graphs where Open
Problem 1.6 is unsolved and interesting.
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