
Innov. Graph Theory 2, 2025, pp. 245–273
https://doi.org/10.5802/igt.12

RAINBOW SUBGRAPHS OF UNIFORMLY COLOURED
RANDOMLY PERTURBED GRAPHS
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Abstract. — For a given δ ∈ (0, 1), the randomly perturbed graph model is
defined as the union of any n-vertex graph G0 with minimum degree δn and the
binomial random graph G(n, p) on the same vertex set. Moreover, we say that a
graph is uniformly coloured with colours in C if each edge is coloured independently
and uniformly at random with a colour from C.

Based on a coupling idea of McDiarmid, we provide a general tool to tackle
problems concerning finding a rainbow copy of a graph H = H(n) in a uniformly
coloured perturbed n-vertex graph with colours in [(1+o(1))e(H)]. For example, our
machinery easily allows to recover a result of Aigner-Horev and Hefetz concerning
rainbow Hamilton cycles, and to improve a result of Aigner-Horev, Hefetz and
Lahiri concerning rainbow bounded-degree spanning trees.

Furthermore, using different methods, we prove that for any δ ∈ (0, 1) and
integer d ⩾ 2, there exists C = C(δ, d) > 0 such that the following holds. Let T
be a tree on n vertices with maximum degree at most d and G0 be an n-vertex
graph with δ(G0) ⩾ δn. Then a uniformly coloured G0 ∪ G(n, C/n) with colours
in [n − 1] contains a rainbow copy of T with high probability. This is optimal both
in terms of colours and edge probability (up to a constant factor).

1. Introduction

Given δ ∈ (0, 1), we define Gδ,n to be the family of graphs on vertex set
[n] with minimum degree at least δn, and we let G(n, p) be the binomial
random graph on vertex set [n] with edge probability p. One of the cen-
tral themes in extremal combinatorics is determining the minimum degree
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threshold for a given graph property P, i.e. how large δ needs to be so that
every G ∈ Gδ,n satisfies P. Similarly, probabilistic combinatorics aims to
determine how large p needs to be for G(n, p) to satisfy P with high prob-
ability(1) . Bohman, Frieze and Martin [8] provided a connection between
the extremal and the random graph settings by introducing the randomly
perturbed graph model. For a given δ ∈ (0, 1), this is defined as G0 ∪G(n, p)
where G0 ∈ Gδ,n, i.e. as the graph on [n] whose edge set is the union of the
edges of a deterministic graph G0 with minimum degree at least δn and the
edges of a random graph G(n, p) on the same vertex set. For a given δ and
a given graph property P, a pivotal question in the area is to determine
how large p needs to be so that for every G0 ∈ Gδ,n, with high probability,
G0 ∪ G(n, p) satisfies P. More precisely, we say that p̂ = p̂(δ, P, n) is a
perturbed threshold for the property P at δ if there are constants C > c > 0
such that for any p ⩾ Cp̂ and for any sequence of n-vertex graphs (Gn)n∈N
with Gn ∈ Gδ,n we have limn→∞ P

(
Gn ∪ G(n, p) ∈ P

)
= 1, and for any

p ⩽ cp̂ there exists a sequence of n-vertex graphs (Gn)n∈N with Gn ∈ Gδ,n

such that limn→∞ P
(
Gn ∪ G(n, p) ∈ P

)
= 0.

For example, the main result of [8] is that when P is the property of
being Hamiltonian, n−1 is a perturbed threshold for P at δ, for any δ ∈
(0, 1/2). This interpolates between the well known result that the threshold
for the containment of a Hamilton cycle in G(n, p) is n−1 log n, and the
classical theorem of Dirac that every n-vertex graph with minimum degree
at least n/2 is Hamiltonian (and thus when δ ⩾ 1/2, no random edges
are needed in the perturbed model). Since [8], there has been a sizeable
body of research extending and adapting results from the extremal and the
probabilistic setting to the perturbed one, particularly when the property P
is the containment of a spanning subgraph (e.g. trees [9, 20, 24], factors [7,
11, 18], bounded-degree subgraphs [10] and powers of Hamilton cycles [4,
5, 12, 13, 28]).

other flourishing trend is to investigate the emergence of rainbow struc-
tures in uniformly edge-coloured graphs. Given an edge-coloured graph G,
a subgraph H of G is rainbow if each edge of H has a different colour. More-
over we say that a graph G is uniformly edge-coloured in a set of colours
C if each edge of G gets a colour independently and uniformly at random
from C. Instances of this problem in the random graph setting can be found
in [2, 6, 14, 15, 16]. Here we focus on the perturbed setting.

(1) Formally, we say that a sequence of events (An)n∈N holds with high probability if
P[An] → 1 as n → ∞.
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Let H = H(n) be a given n-vertex graph, δ ∈ (0, 1) and C be a set of
colours. Suppose we would like to find (with high probability) a rainbow
copy of H in a uniformly coloured perturbed graph G ∼ G0 ∪G(n, p), with
G0 ∈ Gδ,n and colours in C. In particular, G must contain a copy of H and
thus p needs to satisfy p ⩾ Cp̂ where p̂ is a perturbed threshold at δ for the
containment of H, and C is a large enough constant. Moreover, because
in a rainbow copy each edge gets a different colour, the colour set C must
satisfy |C| ⩾ e(H). Our following result implies that, in many cases, these
two conditions are asymptotically enough to guarantee a rainbow H with
high probability.

Theorem 1.1. — Let p, ε ∈ (0, 1), set

µ := ε(1 − p) − p

(1 + ε)(1 − p) and q := (1 + ε−1)p ,

and suppose that µ > 0. Let H be a collection of subgraphs of Kn, each with
m edges, and G0 be an n-vertex graph. Let G′

0 be the random subgraph of
G0, where each edge is sampled independently with probability µ. Then

P

 G′
0 ∪ G(n, p)
contains

some H ∈ H

 ⩽ P

 a uniformly edge-coloured G0 ∪ G(n, q),
with colours in [(1 + ε)m],
contains a rainbow H ∈ H

 .

The proof of Theorem 1.1 builds upon an ingenious coupling idea of
McDiarmid [25], which has already been used for rainbow problems in
random graphs by Ferber and Krivelevich [15]. Our result is extremely
versatile and provides a general machinery to translate existence results
into rainbow ones. Indeed, let p = o(1) and fix ε ∈ (0, 1) as in the statement
of the theorem. Let δ ∈ (0, 1) and suppose that G0 ∈ Gn,δ. Then δ(G′

0) ⩾
εδn/2 with high probability. Now observe that if p is large enough so that,
for every G1 ∈ Gn,εδ/2, the perturbed graph G1 ∪ G(n, p) contains a copy
of H with high probability, then Theorem 1.1 implies the following: for
every G0 ∈ Gn,δ, if G0 ∪ G(n, (1 + ε−1)p) is uniformly edge-coloured in
[(1 + ε)e(H)], then with high probability it contains a rainbow copy of
H. I.e. a perturbed threshold at εδ/2 for containing H provides an upper
bound on the “rainbow perturbed threshold” at δ for containing a rainbow
H when we are allowed to use (1 + ε)e(H) colours.

Note that in general we cannot conclude that this gives the optimal edge
probability for a rainbow H. For example, consider the case of H being a
K3-factor. Then n−2/3 is a perturbed threshold for 0 < δ < 1/3 (see [7]),
log n/n is a perturbed threshold for δ = 1/3 (see [11]) and n−1 is a per-
turbed threshold for 1/3 < δ < 2/3 (see [18]), while by the Corrádi–Hajnal
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Theorem no random edges are needed when δ ⩾ 2/3. In particular, observe
that the perturbed threshold has a “jump” at δ = 1/3. Therefore, while
the existence threshold at 1/3 is log n/n, Theorem 1.1 needs p ⩾ Cn−2/3

to guarantee a rainbow H with high probability when δ = 1/3, where C

is a large enough constant. Indeed, using the same notation as in Theo-
rem 1.1, we can find graphs G0 ∈ Gn,1/3 such that with high probability
the minimum degree of G′

0 drops strictly below n/3. Then, for G′
0 ∪G(n, p)

to contain a triangle factor, we need p ⩾ Cn−2/3.
However, if we have a function p̂ which is a perturbed threshold for all

δ ∈ (0, δ0), then Theorem 1.1 implies that p̂ is also a rainbow perturbed
threshold at every δ ∈ (0, δ0) when colouring with (1 + o(1))e(H) colours.

For example, this is the case for rainbow trees. Krivelevich, Kwan and
Sudakov [24] proved that for any δ ∈ (0, 1/2) the function n−1 is a per-
turbed threshold for containing a given spanning bounded-degree tree. Thus
Theorem 1.1 immediately implies the following.

Corollary 1.2. — For any ε, δ ∈ (0, 1) and d ⩾ 2 an integer, there
exists C = C(ε, δ, d) such that the following holds. Let T be an n-vertex tree
with maximum degree at most d. Then a uniformly coloured G0∪G(n, C/n)
with G0 ∈ Gδ,n and colours in [(1 + ε)n] admits a rainbow copy of T , with
high probability.

Observe that, because of the result from [24] cited above, Corollary 1.2
has the optimal edge probability (up to a constant factor). Moreover, it im-
proves upon a result of Aigner-Horev, Hefetz and Lahiri [2], who proved the
same conclusion with the C/n-term in the probability replaced by ω(1)/n,
and confirms their conjecture that C/n is already enough.

Similarly, Theorem 1.1 has consequences for rainbow Hamilton cycles. In-
deed, it implies that for any ε, δ ∈ (0, 1), there exists C = C(ε, δ) such that
for any G0 ∈ Gδ,n we have that a uniformly coloured G0 ∪ G(n, C/n) with
colours in [(1+ε)n] admits a rainbow Hamilton cycle with high probability.
We remark that this was already proved by Aigner-Horev and Hefetz [1]
using different, ad hoc methods.

Theorem 1.1 still leaves open the question if the extra colours are needed.
Namely, are e(H) colours enough to guarantee a rainbow H with high prob-
ability? This seems to be a much more challenging problem and, even for
specific choices of H, not much is known. To the best of our knowledge,
the only known rainbow result in the perturbed graph setting with the ex-
act number of colours is offered by [22], where we show that a uniformly
coloured G0 ∪ G(n, C/n) with colours in [n] contains a rainbow Hamilton
cycle with high probability (in fact, we prove a version of this for directed
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graphs). This is clearly best possible both in terms of the edge probability
(up to a constant factor, from the result of [8] cited above) and the num-
ber of colours (since a Hamilton cycle has n edges). Here we pursue this
direction further and give an exact result for the containment of rainbow
bounded-degree trees.

Theorem 1.3. — Let δ ∈ (0, 1) and let d ⩾ 2 be a positive integer.
Then there exists C = C(δ, d) > 0 such that the following holds. Let T be
a tree on n vertices with maximum degree at most d, let G0 be a graph on n

vertices with minimum degree at least δn and suppose G ∼ G0 ∪G(n, C/n)
is uniformly coloured in [n − 1]. Then, with high probability, G contains a
rainbow copy of T .

Theorem 1.3 provides a rainbow variant of the result of Krivelevich, Kwan
and Sudakov [24] cited above. Observe that Theorem 1.3 has the optimal
number of colours, and also has the optimal edge probability (up to a
constant factor). For comparison, this improves upon the result of Aigner-
Horev, Hefetz and Lahiri [2, Theorem 1.3], who required edge probability
ω(n−1) and εn additional colours to get the same conclusion.

An important step of our proof of Theorem 1.3 relies on the following
theorem which allows to embed in a rainbow fashion an almost-spanning
bounded-degree tree in a uniformly coloured G(n, p) provided p ⩾ C/n for
large enough C.

Theorem 1.4. — Let ε ∈ (0, 1) and let d ⩾ 2 be a positive integer.
Then there exists C = C(ε, d) > 0 such that the following holds. Let T be
a tree on at most (1−ε)n vertices with maximum degree d and suppose that
G ∼ G(n, C/n) is coloured uniformly in [n]. Then, with high probability,
G contains a rainbow copy of T .

Aigner-Horev, Hefetz and Lahiri [2] already proved that the same conclu-
sion holds when C/n is replaced by ω(1)/n. They conjectured that ω(1)/n

can be replaced by C/n and thus Theorem 1.4 resolves their conjecture.
We remark that Theorem 1.4 is an immediate consequence of two previous
results: the uncoloured version of Theorem 1.4 proved by Alon, Krivele-
vich and Sudakov (cf. [3, Theorem 1.1]) and a general tool of Ferber and
Krivelevich [15] (cf. Theorem 3.4) which allows to translate uncoloured re-
sults into rainbow ones. However, for our purposes, Theorem 1.4 will not
be enough and we will need a more general version, namely when G is
a random subgraph of a pseudorandom graph. For a precise definition of
what we mean by pseudorandom and why this generalisation is needed, we
refer the reader to Section 3.
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Organisation. The rest of the paper is organised as follows. In Sec-
tion 2 we prove Theorem 1.1 and in Section 3 we prove a more general
version of Theorem 1.4 (cf. Theorem 3.2). Section 4 provides an outline
of our arguments for Theorem 1.3, together with the tools and auxiliary
lemmas we use in its proof. The proof splits into two cases, according to
the structure of the tree T we wish to embed: when T has many leaves
(cf. Theorem 4.2, proved in Section 5) and when T has many bare paths
(cf. Theorem 4.3, proved in Section 6). We then finish by some concluding
remarks in Section 7. One supplementary proof is moved to Appendix A.

Notation. Given a graph G, a vertex v ∈ V (G) and a subset X ⊆ V (G),
EG(v, X) denotes the set of edges of the form vx with x ∈ X, and NG(X)
denotes the set of vertices with at least one neighbour in X. A bare path in
G is a path whose interior vertices have degree 2 in G. For a graph G and
p ∈ [0, 1], the p-random subgraph of G, denoted by Gp, is the random graph
resulting from sampling each edge of G independently with probability p.

A digraph D is a set of vertices together with a set of ordered pairs of
distinct vertices and the minimum semi-degree δ0(D) of D is the minimum
over in- and out-degrees of vertices in D. Moreover D(n, p) denotes the
binomial random digraph on n vertices, that is the digraph on [n] where
each ordered pair of distinct vertices forms a directed edge independently
with probability p.

Given an edge-coloured graph G, we denote the colour of an edge e by
C(e) and the set of colours on the edges of a subgraph G′ by C(G′). Moreover
we say that G′ is spanning in a colour set C′ if C(G′) = C′.

For a, b, c ∈ (0, 1], we write, for example, a ≪ b ≪ c in our statements
to mean that there are increasing functions f, g : (0, 1] → (0, 1] such that
whenever a ⩽ f(b) and b ⩽ g(c), the subsequent statement holds.

Throughout, log n denotes the natural logarithm.

2. McDiarmid argument for randomly perturbed graphs

As alluded to in the introduction, the proof of Theorem 1.1, relating
the probability of finding a rainbow H in a perturbed graph to that of
finding a copy of H in an uncoloured perturbed graph, is based on a cou-
pling argument. This is inspired by a result of Ferber and Krivelevich [15,
Theorem 1.2], which in turn uses a coupling trick due to McDiarmid [25].

Proof of Theorem 1.1. — Let C := [(1 + ε)m] be the palette of colours.
We define a sequence of graphs Γ0, . . . , ΓN , where N :=

(
n
2
)

and each
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graph is equipped with a colouring of its edges, where we allow an edge to
be coloured with multiple colours.

Let e1, . . . , eN be an arbitrary enumeration of all the edges of Kn. For
0 ⩽ i ⩽ N define Γi as follows.

• For 1 ⩽ j ⩽ i,
– If ej ∈ E(G0), add ej to Γi and assign it a colour uniformly at

random from C.
– If ej ̸∈ E(G0), add ej to Γi with probability q and assign it a

colour uniformly at random from C.
• For j > i,

– If ej ∈ E(G0), then add ej to Γi with probability ε/(1+ε) and
assign it all colours from C.

– If ej ̸∈ E(G0), then add ej to Γi with probability p and assign
it all colours from C.

We remark that all the random choices mentioned above are mutually in-
dependent.

We claim that Γ0 is distributed as G′
0 ∪ G(n, p), with edges assigned all

colours in C. Indeed, we have

P [e ∈ E (G′
0 ∪ G(n, p))] =

{
µ + (1 − µ)p = ε

1+ε , if e ∈ E(G0)
p, if e /∈ E(G0)

,

which is exactly the probability that e ∈ Γ0, as claimed. Because all edges
in Γ0 have all colours in C, it is therefore the case that

P [G′
0 ∪ G(n, p) has a copy of some H ∈ H]

= P [Γ0 has a rainbow copy of some H ∈ H] .

We also have

P
[

G0 ∪ G(n, q) has a rainbow
copy of some H ∈ H

]
= P

[
ΓN has a rainbow

copy of some H ∈ H

]
,

since ΓN is distributed as G0 ∪ G(n, q) with edges coloured uniformly in C.
Therefore, in order to complete the proof, it is enough to show

(2.1) P
[

Γi−1 contains a rainbow
copy of some H ∈ H

]
⩽ P

[
Γi contains a rainbow
copy of some H ∈ H

]
,

for each i ∈ [N ]. Observe that there are three mutually exclusive scenarios:
(a) Γi−1 contains a rainbow copy of some H ∈ H not using ei;
(b) Γi−1 does not contain a rainbow copy of any H ∈ H, not even if we

add ei and assign it all colours;
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(c) Γi−1 contains a rainbow copy of some H ∈ H if we add ei and
assign it all colours, but does not contain a rainbow copy of some
H ∈ H that avoids ei.

To prove (2.1), it suffices to show that the inequality holds when condi-
tioning each side on each of (a), (b) and (c). This holds with equality if (a)
or (b) holds: if (a) holds, both sides are 1, and if (b) holds, both sides are
0. Now consider (c).

P
[

Γi−1 contains a rainbow
copy of some H ∈ H

∣∣∣∣ (c)
]

=
{

ε/(1 + ε), if ei ∈ E(G0)
p, if ei ̸∈ E(G0)

.

The crucial observation is that if ei can complete a rainbow copy of some
H ∈ H in Γi−1 then there are at least εm colours (out of the (1 + ε)m in
the palette) for ei which yields a rainbow copy of H in Γi. Therefore

P
[

Γi contains a rainbow
copy of some H ∈ H

∣∣∣∣ (c)
]
⩾

{
ε/(1 + ε), if ei ∈ E(G0)
qε/(1 + ε) = p, if ei ̸∈ E(G0)

.

Thus (2.1) holds, completing the proof. □

3. Almost spanning rainbow trees in random graphs

In order to prove Theorem 1.3, about finding a rainbow copy of a span-
ning bounded-degree tree in a perturbed graph, we have to embed a rain-
bow copy of a fixed bounded-degree spanning tree T in a uniformly coloured
G0 ∪ G(n, p), with colours in [n − 1], using both edges of G0 and random
edges of G(n, p). We will do so by first embedding a certain almost-spanning
subtree of T in G(n, p) only (in a rainbow fashion) and then completing it
to a (rainbow) embedding of T in the full perturbed graph G0 ∪ G(n, p).
Therefore, we first show that we can embed almost-spanning trees with
bounded degree in uniformly coloured random graphs in a rainbow fash-
ion.

However, rather than standard random graphs, we consider random sub-
graphs of pseudorandom graphs, for the following reason. To prove The-
orem 1.3 when the tree has many bare paths (cf. Theorem 4.3), we will
first build an absorbing structure, using edges of both G0 and G(n, p), and
then embed a rainbow almost-spanning forest in the remainder, using only
edges from G(n, p). In order to guarantee that the colouring is random
for the second step as well, we use the following trick. We partition the
edges of Kn randomly into two sets. Then for the first step we only use the
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edges of G0 ∪ G(n, p) which appear in the first set and, similarly, for the
second step, we only use those spanned by G(n, p) among the second set of
edges. Hence, the latter is not a random subgraph of the complete graph,
but a random subgraph of a graph that has pseudorandom properties with
high probability. We will use the following definition of pseudorandomness,
where the number of edges between any two not-too-small disjoint vertex
sets is close the expected number of such edges in G(n, 1/2).

Definition 3.1 (Pseudorandom graph). — A graph G on n vertices is
pseudorandom if for any two disjoint subsets of vertices A, B with |A|·|B| ⩾
250n, we have e(A, B) ⩾ |A| |B| /3.

We can now state the main result of this section.

Theorem 3.2. — Let 1/C ≪ ε, 1/d < 1 with d ⩾ 2 being a positive
integer. Let T be a tree on at most (1 − ε)n vertices with maximum degree
d, let G be a pseudorandom graph on n vertices, and write p := C/n.
Suppose that Gp is coloured uniformly with n colours. Then, with high
probability, Gp contains a rainbow copy of T .

Observe that Theorem 1.4 is now a simple corollary of Theorem 3.2,
since the complete graph on n vertices is a pseudorandom graph. In order
to prove Theorem 3.2, we first prove an uncoloured version of it.

Proposition 3.3. — Let 1/C ≪ ε, 1/d < 1 with d ⩾ 2 being a positive
integer. Set p := C/n and let G be a pseudorandom graph on n vertices.
Then, with high probability, Gp contains a copy of every tree with at most
(1 − ε)n vertices and maximum degree at most d.

This is a generalisation of a result due to Alon, Krivelevich and Su-
dakov [3, Theorem 1.1] who already proved that the same conclusion holds
when G is the complete graph on n vertices. Their result relies on the fact
that sparse and almost-regular “robust expanders” contain a copy of every
almost-spanning bounded-degree tree (cf. Theorem A.1). We will employ
the same approach and prove Proposition 3.3 using essentially the same
arguments, but with minor differences in calculations. For the sake of com-
pleteness, we give a proof in Appendix A.

The next result allows to translate Proposition 3.3 into Theorem 3.2, and
is a simple consequence of a general result of Ferber and Krivelevich [15,
Theorem 1.2] for binomial random subgraphs of uniformly edge-coloured
hypergraphs.
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Theorem 3.4 (Consequence of [15, Theorem 1.2]). — Let ε, p ∈ (0, 1)
and set q := ε−1p. Suppose that H is a collection of subgraphs of Kn with
at most (1 − ε)n edges. Then

P
[

G(n, p) contains
some H ∈ H

]
⩽ P

 a uniformly edge-coloured G(n, q),
with colours in [n],

contains a rainbow H ∈ H

 .

It is now easy to prove Theorem 3.2.
Proof of Theorem 3.2. — Let T be a tree on at most (1 − ε)n vertices

with maximum degree d and G be an n-vertex pseudorandom graph on V .
Let C0 be given by Proposition 3.3 on input ε and d, and set p0 := C0/n.
Let H be the collection of labelled copies of T in G.

Observe that Gp0 contains a copy of T with high probability, by Propo-
sition 3.3. Let G(n, p0) be the binomial random graph on V , coupled with
Gp0 so that Gp0 ⊆ G(n, p0). Then it follows that with high probability
G(n, p0) contains a graph in H.

Set C := ε−1C0 and p := C/n. Let G(n, p) be the binomial random graph
on V , coupled with Gp so that an edge e in G is in Gp if and only if it is in
G(n, p), and colour each of its edges uniformly in [n]. Then Theorem 3.4
implies that with high probability G(n, p) contains a rainbow H ∈ H and,
because H is a collection of subgraphs of G and by the coupling, it follows
that so does Gp. That is, with high probability, Gp contains a rainbow copy
of T . □

4. Overview of Theorem 1.3

Let G0 be a graph on vertex set [n] with minimum degree at least δn. Let
G ∼ G0 ∪ G(n, C/n) and suppose G is uniformly coloured in [n − 1]. Let T

be an n-vertex tree with maximum degree at most d that we wish to embed
in a rainbow fashion in G. To aid our embedding, we seek simple structures
in T , for which we use the following observation of Krivelevich [23], where
we recall that a bare path in T is a path whose interior vertices have degree 2
in T .

Lemma 4.1 ([23, Lemma 2.1]). — For any integers n, k > 2, a tree with
n vertices either has at least n/4k leaves or a collection of at least n/4k

vertex-disjoint bare paths, each of length k.

Our proof splits into two cases, according to the structure of the tree T .
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Theorem 4.2 (Trees with many leaves). — Let 1/C ≪ ζ, δ, 1/d < 1
with d ⩾ 2 an integer and δ ∈ (0, 1). Let T be a tree on n vertices with
maximum degree at most d, containing at least ζn leaves. Let G0 be an
n-vertex graph with minimum degree at least δn, and suppose that G ∼
G0∪G(n, C/n) is uniformly coloured in [n−1]. Then, with high probability,
G contains a rainbow copy of T .

Theorem 4.3 (Trees with many bare paths). — Let 1/C ≪ ζ ≪ δ, 1/d

with d ⩾ 2 and ζn/24 being integers and δ ∈ (0, 1). Let T be a tree on n

vertices with maximum degree at most d, containing at least ζn/24 bare
paths, each with length 6/ζ. Let G0 be an n-vertex graph with minimum
degree at least δn, and suppose that G ∼ G0 ∪ G(n, C/n) is uniformly
coloured in [n−1]. Then, with high probability, G contains a rainbow copy
of T .

Theorem 1.3 easily follows by combining Lemma 4.1 and Theorems 4.2
and 4.3. For both the two theorems above, we employ the following strategy.
We remove the paths or leaves from T and embed the remaining almost-
spanning forest in a rainbow fashion using Theorem 3.2. The challenge is
then to embed the deleted paths or leaves covering exactly the remaining
vertices and using exactly the remaining colours. We discuss this informally
now, mentioning all auxiliary lemmas that we will need, and postpone the
precise proofs to subsequent sections. Besides the lemmas below, the only
other tool we shall need is Chernoff’s bound.

Lemma 4.4 (Chernoff Bound, [19, Theorem 2.8]). — Let X be the sum
of mutually independent indicator random variables. Then for any δ ∈ (0, 1)
we have

P
[∣∣X − E[X]

∣∣ ⩾ δ · E[X]
]
⩽ 2 exp

(
−δ2

3 · E[X]
)

.

4.1. Embedding trees with many leaves

Suppose that T has Ω(n) leaves and let L be a maximal collection of
leaves with distinct parents M . By the maximum degree assumption, we
have |L| = Ω(n). Let V be the vertex set of the perturbed graph G.

We first embed T \ L in a rainbow fashion in G(n, C/n) using Theo-
rem 1.4. Completing this to a rainbow embedding of T essentially amounts
to finding a rainbow perfect matching between the image of M and the
uncovered vertices of V , which uses all the unused colours. This can be
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reduced to finding a rainbow directed Hamilton cycle in a suitable aux-
iliary edge-coloured perturbed directed graph. For that we will apply the
following result of the authors, where we recall that D(n, p) denotes the
binomial random digraph on n vertices with edge probability p.

Theorem 4.5 ([22, Theorem 1.2]). — Let 1/C ≪ δ < 1 and D0 be a
directed graph on vertex set [n] with minimum in- and out-degree at least
δn. Suppose D ∼ D0 ∪ D(n, C/n) is uniformly coloured in [n]. Then, with
high probability, D has a rainbow directed Hamilton cycle.

4.2. Embedding trees with many bare paths

Suppose now that T has Ω(n) not-too-short disjoint bare paths. Consider
r such paths of length ℓ (where r = Ω(n) and ℓ is a constant which is not
too small), and denote the ends of the i-th path by si and ti. Let F be
the forest resulting from removing the interior vertices of these bare paths
from T .

We will use Theorem 3.2 to embed F in G. However, in order to be
able to turn this into a rainbow embedding of T (by embedding a rainbow
collection of r paths of length ℓ, with the i-th path having the images of si

and ti as endpoints), we first prepare an absorbing structure. We remark
that this is the reason why Theorem 3.2 is stated for random subgraphs of
pseudorandom graphs rather than G(n, p) directly.

We will state here several lemmas (namely Lemmata 4.6, 4.8 and 4.9)
from a manuscript [21] by the first two authors, where they proved an
undirected version of Theorem 4.5. These lemmas all have analogues in [22]
for the directed setting, and in most cases have very similar proofs, but the
directed versions do not immediately imply the undirected ones (due to
parallel directed edges xy and yx being coloured independently).

Absorber. Before building our absorber, we set aside a set of flexible
vertices and flexible colours, where flexible here refers to the fact that they
can be used to connect arbitrary pairs of vertices into short rainbow paths
using an arbitrary colour.

Lemma 4.6 (Lemma 6.1 in [21]). — Let 1/C ≪ ν ≪ µ ≪ δ < 1.
Let G0 be an n-vertex graph on V with minimum degree at least δn and
G ∼ G0 ∪ G(n, C/n) be uniformly coloured in C := [n − 1]. Then there
exist Vflex ⊆ V and Cflex ⊆ C of size µn such that with high probability the
following holds. For all u, v ∈ V , c ∈ C, and V ′

flex ⊆ Vflex and C′
flex ⊆ Cflex
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of size at least (µ − ν)n, there exists a rainbow path of length seven with
endpoints u, v, internal vertices in V ′

flex and colours in C′
flex ∪ {c}, that

contains the colour c.

The building block of our absorber is given by the so-called (v, c)-gadget.
These have been introduced by Gould, Kelly, Kühn and Osthus [17] in the
context of random optimal proper colourings of the complete graph, and
have already been used for perturbed graphs in [22].

Definition 4.7 (Gadget). — Let v be a vertex and c a colour. A (v, c)-
gadget, denoted by Av,c, is the edge-coloured graph on 11 vertices depicted
in Figure 4.1. With reference to the notation in Figure 4.1, we call

P := u1vu2P1w2w3P2w1w4

the (v, c)-absorbing path and

P ′ := u1u2P1w2w1P2w3w4

the (v, c)-avoiding path. Moreover, we call u1 the first vertex of the ab-
sorber, and w4 the last vertex. Finally, we say that V (Av,c) \ {v} are the
internal vertices of Av,c and C(Av,c) \ {c} are the internal colours.

Observe that P and P ′ in the definition of a gadget are both rain-
bow paths and share the same endpoints, which are the first and last
vertex of the absorber. Moreover, P is spanning in V (Av,c) and C(Av,c)
and, similarly, for P ′ we have V (P ′) = V (P ) \ {v} = V (Av,c) \ {v} and
C(P ′) = C(P ) \ {c} = C(Av,c) \ {c}.

The existence of (v, c)-gadgets is guaranteed by the following lemma.

Lemma 4.8 (Lemma 5.2 in [21]). — Let 1/C ≪ ν ≪ δ < 1. Let G0
be an n-vertex graph on V with minimum degree at least δn and G ∼
G0 ∪ G(n, C/n) be uniformly coloured in C := [n − 1]. Then with high
probability the following holds. For any v ∈ V and c ∈ C and for all V ′ ⊆ V

and C′ ⊆ C that have size at least (1−ν)n, there exists a (v, c)-gadget with
internal vertices in V ′ and internal colours in C′.

Lemma 4.8 allows to find many vertex- and colour-disjoint gadgets. In or-
der to build a system of paths with a global absorbing property, we connect
several of them. Suppose, for example, we are given a (v, c)-gadget Av,c and
a (v′, c′)-gadget Av′,c′ , that are vertex- and colour-disjoint. By connecting
the last vertex of Av,c to the first vertex of Av′,c′ with a short rainbow path
(vertex- and colour-disjoint of the gadgets), we obtain a structure which
can absorb the pairs (v, c) and (v′, c′) simultaneously. The existence of such
short rainbow paths is guaranteed by the following lemma.
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v

u1

u2 w3 w4

w2 w1

c

P1 P2

v

u1

u2 w3 w4

w2 w1

c

P1 P2

v

u1

u2 w3 w4

w2 w1

c

P1 P2

Figure 4.1. The top figure shows a (v, c)-gadget Av,c, where we remark that
C(w1w4) = c and all colours are pairwise different, except for C(vu1) =
C(w1w2), C(vu2) = C(w3w4) and C(u1u2) = C(w2w3). The bottom-left figure
highlights the absorbing path P and the bottom-right one highlights the
avoiding path P ′.

Lemma 4.9 (Corollary of Lemma 4.3 in [21]). — Let 1/C ≪ ρ, λ ≪ δ.
Let G0 be an n-vertex graph on V with minimum degree at least δn and C be
a set of colours of size n−1. Let G ∼ G0 ∪G(n, C/n) be uniformly coloured
in C. Then with high probability the following holds. For all subsets V ′ ⊆ V

and C′ ⊆ C of size at least (1 − ν)n and any distinct u, v ∈ V , there exists
a rainbow path of length three with u and v as endpoints, with internal
vertices in V ′ and colours in C′.

Template. Note that we only have enough space to accommodate O(n)
gadgets. The way we choose which pairs (v, c) to absorb (in order for the
final structure to have strong absorbing properties) will be dictated by an
auxiliary template graph. This technique has been introduced by Mont-
gomery [26, 27] and has already found a number applications.

Lemma 4.10 (Variant of Lemma 2.8 in [26]). — Let 1/n ≪ ζ ⩽ 1
and suppose that ζn is an integer. Then there exists a bipartite graph H

on vertex classes R and S1 ∪ S2 with |R| = (2 − ζ)n, |S1| = |S2| = n

and dH(x) = 40 for each x ∈ R, such that the following is true. Given
any subset S′

2 ⊆ S2 with |S′
2| = ζn, there is a matching between R and

S1 ∪ (S2 \ S′
2).
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Lemma 4.10 can be proved identically to the proof of Lemma 2.8 in [26].
We call the graph given by Lemma 4.10 an (n, ζ)-template graph on
(R, S1 ∪ S2).

5. Embedding trees with many leaves

Proof of Theorem 4.2. — Let ε, λ > 0 be such that

1/C ≪ ε ≪ λ ≪ ζ, δ, 1/d ,

let G1 ∼ G(n, C/n), so that G ∼ G0 ∪ G1, and set V := V (G) and
C := [n − 1].

We embed T in G in two steps. First, we remove a small linear number
of leaves with distinct parents, and embed the resulting almost-spanning
tree in a rainbow fashion using Theorem 1.4 and G1. Then we will find
a rainbow perfect matching between the images of the parents and the
uncovered vertices of V , using all remaining colours.

Let L be a maximal collection of leaves of T with distinct parents. Since
T has at least ζn leaves and maximum degree at most d, we have |L| ⩾
d−1ζn ⩾ λn and we pick an arbitrary subset of L of size λn, which, abusing
notation, we denote by L. Let M be the collection of parents of the leaves
in L and observe that |L| = |M |. Finally let T ′ = T \ L and note T ′ is a
tree on (1 − λ)n vertices.

Let R be a random subset of V of size (λ − ε)n. Then, by Chernoff’s
bound and the union bound, with high probability,

(5.1) every v ∈ V satisfies |NG0(v) ∩ R| ⩾ 1
2 · δλn.

We assume that this holds.
We claim that G1[V \ R] contains a rainbow copy of T ′, with high

probability. Writing n′ := |V \ R| = (1 − (λ − ε))n, let C′ be a subset
of C of size n′, and let G′

1 be the subgraph of G1[V \ R] consisting of
edges coloured C′. Then G′

1 is a copy of a random graph G(n′, C ′/n′),
where C ′ = (|C′|/|C|) · C ⩾ C/2, which is uniformly coloured in C′. As
|V (T ′)| = (1 − λ)n ⩽ (1 − ε/2)n′, Theorem 1.4 implies that G′ contains a
rainbow copy of T ′, as claimed.

Assume that a rainbow T ′ as above exists, and fix an embedding of it
in V \ R. Let C0 be the set of colours in C not used for the embedding of
T ′, let M0 be the image of M in the embedding, and let V0 be the set of
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vertices in V \ R that are not used in the embedding. Then

|C0| = n − 1 − (|V (T ′)| − 1) = λn,

|V0| = n − |V (T ′)| − |R| = εn,

|M0| = λn.

We claim that, with high probability,

(5.2) every v ∈ V satisfies |NG0(v) ∩ M0| ⩾ 1
2 · δλn.

Indeed, observe that M0 is distributed uniformly at random among all
subsets of V \ R of size λn(2) , thus the assertion in (5.2) follows from
a standard application of Chernoff’s bound and the union bound, using
ε ≪ λ.

We are left to find a rainbow perfect matching between M0 and V0 ∪ R

using all colours in C0, and we will do that in two phases, by first finding
a rainbow matching saturating V0. Write G′

0 := G0 \ G1 and note that so
far we have only revealed colours of the edges of G1[V \ R], and thus the
colours of the edges of G′

0[V0, M0] are yet to be revealed.

Claim 5.1. — With high probability, there is a rainbow matching in
G′

0[V0, M0] which saturates V0 and uses colours in C0.

Proof. — For v ∈ V0, write Xv for the number of colours from C0 appear-
ing on edges in G′

0[{v}, M0]. We claim that, with high probability, Xv ⩾ 2εn

for every v ∈ V0. Note that this implies the claim as, since |V0| = εn, the
required rainbow matching can be constructed greedily.

To estimate the probability that Xv < 2εn, note that if this holds then
there is a subset C′ ⊆ C0 of size 2εn such that all edges of G′

0 between v

and M0 are coloured using colours in (C \ C0) ∪ C′. Here we use (5.2) and
|(C\C0)∪C′|

|C| ⩽ 1−(λ−2ε), as well as the easy fact that, with high probability,
|NG1(v) ∩ M0| ⩽ 100 log n for every v ∈ V0.

P [Xv < 2εn] ⩽
(

λn

2εn

)
·
(
1 − (λ − 2ε)

)|NG0\G1 (v)∩M0|

⩽

(
eλ

2ε

)2εn

exp
(

− (λ − 2ε) · δλn

4

)
⩽ exp

((
2ε · log(eλ/(2ε)) − δλ2/8

)
n
)

= o(n−1),

(2) Let us give some more formal details to convince the reader that this line of reasoning
is valid. Suppose we embed T ′ in a random graph with vertex set V ′, with V ′ ∩ V = ∅
and |V ′| = n. Choose uniformly at random a bijection π : V ′ → V . Then the image of
V (T ′) under π is distributed uniformly at random among all subsets of V of size |V (T ′)|.
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using ε ≪ λ, δ. It follows that Xv ⩾ 2εn for every v ∈ V0, with high
probability. □

Let C1 be set of colours still available and M1 the unsaturated vertices
in M0. Then |M1| = |C1| = |R| = (λ − ε)n. Note that, so far, we have not
revealed any colours of edges touching R, nor edges of G1 touching R. Also,
using (5.1), (5.2) and the fact that |M1| = |M0| − εn, the graph G0[M1, R]
is a balanced bipartite graph on 2(λ − ε)n vertices, with minimum degree
at least δλn/2 − εn ⩾ δλn/4.

We define three random bipartite graphs H0, H1, H2, with bipartition
(M1, R), as follows. Let the edges in H0 be the edges in G0[M1, R] that are
not in G1 and whose colour is in C1, let the edges in H1 be the edges in
G1[M1, R] that have a colour in C1, and include each pair in M1 × R in H2
with probability λC/(2n), independently.

Claim 5.2. — Fix an outcome of H0. Then H1 can be coupled with H2
so that H0 ∪ H2 ⊆ H0 ∪ H1.

Proof. — Note that it suffices to prove P [e ∈ E(H1) | e /∈ E(H0)] ⩾ λC
2n

for every e ∈ M1 × R. To see this, note first that if e /∈ E(G0) then

P [e ∈ E(H1) | e /∈ E(H0)] = P[e ∈ E(H1)]

= P[e ∈ G1] · P[C(e) ∈ C1] = C

n
· |C1|

n − 1 ⩾
λC

2n
.

Now consider e ∈ E(G0). Then

P
[
e ∈ E(H1) | e /∈ E(H0)

]
= P[e ∈ E(H1) \ E(H0)]

P[e /∈ E(H0)]

= P[e ∈ G1 and C(e) ∈ C1]
P[e ∈ E(G1)] + P[e /∈ E(G1) and C(e) /∈ C1]

=
C
n · |C1|

n−1
C
n +

(
1 − C

n

)
·
(

1 − |C1|
n−1

) ⩾
λC

2n
.

□

By Chernoff’s bound and δ(G0[M1, R]) ⩾ δλn/4, with high probability
δ(H0) ⩾ δλ2n/8. Fix such an outcome of H0, write H := H0 ∪ H2, and fix
a coupling so that H ⊆ H0 ∪ H1. Then we know that all edges in H0 ∪ H2
are coloured in C1, but we have not yet revealed the colours. Thus H is
coloured uniformly in C1.

We are done if we can find with high probability a rainbow perfect match-
ing in H with colours in C1. To this end, we define the following auxiliary
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digraph D with vertex set [m], where m := |R| = |M1| = |C1| = (λ − ε)n.
Let σ1 : [m] → M1 and σ2 : [m] → R be arbitrary bijections. Let D0 and
D2 be the digraphs on [m] with the following edges: for distinct x, y ∈ [m]
we have xy ∈ E(D0) if and only if σ1(x)σ2(y) ∈ E(H0), and xy ∈ E(D2)
if and only if σ1(x)σ2(y) ∈ E(H2). Then define D := D0 ∪ D2. It is easy
to check that δ0(D0) = δ(H0) ⩾ δλ2m/8, each directed edge is present in
E(D2) independently with probability at least λ2C/(4m), and each edge
of D is coloured independently and uniformly at random in C1.

Therefore, D satisfies Theorem 4.5 and thus, with high probability, D has
a rainbow directed Hamilton cycle (x1, . . . , xm). Then, from the definition
of D, it follows that

{σ1(x1)σ2(x2), σ1(x2)σ2(x3), . . . , σ1(xm)σ2(x1)}

is a rainbow perfect matching in H that uses all colours in C1, as desired. □

6. Embedding trees with many bare paths

Proof of Theorem 4.3. — Let µ, ν satisfy

1/C ≪ ζ ≪ µ ≪ ν ≪ δ, 1/d ,

such that µ/ζ, µn, ζn/24 are integers. Set V := V (G), r := ζn/24 ∈ N
and k := 24(2µ − ζ)/ζ ∈ N. Pick C ′ so that (1 − C ′/n)2 = 1 − C/n (then
C ′ ⩾ C/2).

Let G1, G2 ∼ G(n, C ′/n) and G3 ∼ G(n, 1/2) be independent binomial
random graphs on V , so that G ∼ G0 ∪ G1 ∪ G2. Let G′

0, G′
1 be the

subgraphs of G0, G1 respectively with edges in E(G3), and let G′ ∼ G′
0 ∪

G′
1. Let G′′ be the spanning graph of Kn with edges disjoint from E(G3)∪

E(G1). Straightforward applications of the union bound and Chernoff’s
bound yield that, with high probability, simultaneously

(i) G′
0 has minimum degree at least δ/3,

(ii) every disjoint vertex sets A, B in G′′ with |A||B| > 240n satisfy
eG′′(A, B) ⩾ |A| |B|/3.

In particular, every induced subgraph of G′′ on at least 0.99n vertices is
pseudorandom (as 250 · 0.99n ⩾ 240n). Notice that G′ and G′′ are edge-
disjoint since E(G′) ⊆ E(G3) and E(G′′) ∩ E(G3) = ∅.

First we will use G′ to construct the absorbing structure. Then we will
use the random subgraph of G′′, with edges in E(G2) and colours disjoint
from those on the absorbing structure, to embed the almost spanning forest
resulting from removing r = ζn/24 bare paths (whose precise length will be
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determined later). Finally, we will use the absorbing structure to complete
this to a rainbow copy of T .

We start by setting aside the sets needed to build our absorbing structure.
By the union bound, the conclusions of Lemmata 4.6, 4.8 and 4.9 hold
simultaneously and with high probability for G′, so we assume they all hold.
Let Vflex ⊆ V and Cflex ⊆ C be the sets of size µn given by Lemma 4.6. Let
Vbuf and Cbuf be arbitrary subsets of V \Vflex and C \Cflex respectively, each
of size µn. Let X := {xi : i ∈ [r]}, Y := {yi : i ∈ [r]} and W be pairwise
disjoint subsets of V \(Vflex ∪Vbuf) with |W | = (2µ−ζ)n. Let D be a subset
of C \(Cflex ∪Cbuf) with |D| = (2µ−ζ)n. Our absorber will be able to absorb
a small set of vertices and a small set of colours while connecting, for each
i ∈ [r], the vertex xi to the vertex yi through a rainbow path. The vertex
set W and the colour set D will only be used to make our approach work
and do not play a special role.

Denote by H the (µn, ζ/µ)-template graph on (R, S1 ∪ S2) given by
Lemma 4.10, with |R| = (2µ − ζ)n and |S1| = |S2| = µn, and notice
e(H) = 40 · |R|. Let πv : S1 ∪ S2 → Vbuf ∪ Vflex be a bijection such that
πv(S1) = Vbuf (and thus πv(S2) = Vflex). Similarly, let πc : S1 ∪ S2 →
Cbuf ∪Cflex be a bijection such that πc(S1) = Cbuf (and thus πc(S2) = Cflex).
Observe that we have |W | = |D| = |R| = r · k (recalling that r = ζn/24
and k = 24(2µ − ζ)/ζ), and thus we can write W = {wx : x ∈ R} and
D = {dx : x ∈ R}.

Claim 6.1. — With high probability, G′ contains a (πv(y), dx)-gadget
and a (wx, πc(y))-gadget, for each xy ∈ E(H) with x ∈ R and y ∈ S1 ∪ S2,
with the following property. The internal vertices of any two of them are
pairwise disjoint and disjoint of Vbuf ∪ Vflex ∪ X ∪ Y ∪ W ; similarly, the
internal colours of any two of them are pairwise disjoint and disjoint of
Cbuf ∪ Cflex ∪ D.

Proof. — Let A be a maximal collection of gadgets as in the statement
of the claim and suppose for contradiction |A| < 2|E(H)| = 2 · 40 · |R| =
80(2µ − ζ)n. Let V0 (resp. C0) be the union of the vertices (resp. colours)
spanned by the gadgets in A and those in Vbuf ∪ Vflex ∪ X ∪ Y ∪ W (resp.
Cbuf ∪ Cflex ∪ D). Then |V0|, |C0| = O(µn) < νn, where we used µ ≪ ν.
Hence, by the conclusion of Lemma 4.8 for G′, we can add another gadget
to A, contradicting its maximality. □

Partition R into r sets R1, . . . , Rr each of size |R| /r = k. Then denote
by A1

i , . . . , A80k
i the gadgets for the edges incident to Ri. Note that there

are precisely 80k of them since dH(x) = 40 for each x ∈ R, and each edge
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incident to x has two associated gadgets. We will now connect xi to yi via
short rainbow paths and the gadgets associated to Ri.

Claim 6.2. — With high probability, G′ contains a collection

{P 1
i , . . . , P 80k+1

i : i ∈ [r]}

of (80k + 1) · r rainbow paths of length three such that the following holds.
All their interior vertices (resp. colours) are distinct, and disjoint from
Vbuf ∪ Vflex ∪ X ∪ Y ∪ W (resp. Cbuf ∪ Cflex ∪ D) and the set of vertices
(resp. colours) spanned by the gadgets given by Claim 6.1. Moreover, for
each i ∈ [r], the path P 1

i starts with xi and ends with the first vertex of
A1

i ; the path P j
i starts with the last vertex of Aj−1

i and ends with the first
vertex of Aj

i , for each 2 ⩽ j ⩽ 80k; the path P 80k+1
i starts with the last

vertex of A80k
i and ends with yi.

Proof. — Let P be a maximal collection of connecting paths as in the
statement of the claim. Suppose for contradiction |P| < (80k + 1) · r and
let u and v be a pair of vertices as in the statement of the claim not
connected by any path in P. Let V0 (resp. C0) be the union of the vertices
(resp. colours) spanned by the connecting paths of P, the gadgets given by
Claim 6.1 and the vertices in Vbuf ∪ Vflex ∪ X ∪ Y ∪ W (resp. the colours
in Cbuf ∪ Cflex ∪ D). Observe that |V0|, |C0| = O(µn) < νn, using µ ≪ ν. By
the conclusion of Lemma 4.9 for G′, there exists a rainbow path of length
three with endpoints u and v, that avoids V0 and C0. Therefore we can add
another connecting path to P, contradicting its maximality. □

Recall that for each pair (xi, yi) we built 80k gadgets and 80k + 1 con-
necting paths. As we will see shortly, when using the absorbing structure,
for each pair we will use the absorbing paths (each of length 10, cf. Fig-
ure 4.1) in precisely 2k gadgets, and the avoiding path (each of length 9,
cf. Figure 4.1) in every other gadget. Together with the connecting paths
(each of length 3), we will get a path of length

(6.1) ℓ := 3(80k + 1) + 9(80k − 2k) + 10 · 2k = 962k + 3

between xi and yi. Let ℓ′ := 28 and let F be the forest resulting from
removing the internal vertices of r bare paths of length ℓ + ℓ′ from T .
Observe that T does indeed have r bare paths of length ℓ+ℓ′, since ℓ+ℓ′ =
962k +31 ⩽ 1000k = 1000 ·24(2µ−ζ)ζ−1 ⩽ 6ζ−1. We removed the internal
vertices of paths of length ℓ + ℓ′ as opposed to length ℓ, as this will allow
us to cover, using Lemma 4.6, the leftover vertices and colours after the
embedding of F in G′′ via Theorem 3.2. In fact, ℓ′ has been chosen so that
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the path length we get from Lemma 4.6 matches the length of the paths
removed from T , and only this choice of ℓ′ works.

Let Ṽ (resp. C̃) be the set of all vertices (resp. colours) used to build the
gadgets of Claim 6.1 and the connecting paths of Claim 6.2. Then

|Ṽ | = 2e(H) · 10 + |Vflex| + |Vbuf | + |W | + |X| + |Y | + (80k + 1) · r · 2
= (962k + 28)r

and similarly

|C̃| = 2e(H) · 9 + |Cflex| + |Cbuf | + |D| + (80k + 1) · r · 3 = (962k + 27)r .

Moreover, since we removed (ℓ + ℓ′ − 1) · r vertices from T , we have

|V (F )| = n − r(ℓ + ℓ′ − 1) = n − (962k + 30)r.

Claim 6.3. — With high probability, G′′[V \Ṽ ] contains a rainbow copy
of F , with edges in E(G2) and colours disjoint from C̃.

Proof. — Let C0 be a subset of C \ C̃ of size |V \ Ṽ | (such a set exists as
|C \ C̃| ⩾ |V \ Ṽ |), and write V0 := V \ Ṽ . Let H := G′′[V0]. By (ii), H is
pseudorandom. Let H ′ be the subgraph of H, consisting of edges that are
in G2 and are coloured in C0. This means that each edge of H is included
in H ′ with probability p = (C ′/n) · |C0|/|C|. Now reveal the colouring of
H ′, and observe that it is distributed uniformly at random in C0. Moreover
we have |V (F )| = |V0| − 2r = |V0| − ζn/12 ⩽ (1 − ζ/12)|V0| and |C0| = |V0|.
Hence, we can apply Theorem 3.2 to H ′ and get that, with high probability,
H ′ contains a rainbow copy of F . □

Fix an embedding of F in G′′. Let V ′ and C′ be the vertices and colours
not in Ṽ and C̃ and not used for the embedding of F . Then |V ′| = n −
|Ṽ | − |V (F )| = 2r and |C′| = (n − 1) − |C̃| − (|V (F )| − r − 1) = 4r, where
we used that F is a forest with r + 1 components. Thus we can write
V ′ = {v1

i , v2
i : i ∈ [r]} and C′ = {c11

i , c12
i , c21

i , c22
i : i ∈ [r]}. Let x′

i and y′
i be

the embedded endpoints of the i-th bare path of T .

Claim 6.4. — With high probability, there is a collection of pairwise
vertex- and colour-disjoint rainbow paths {Q11

i , Q12
i , Q21

i , Q22
i : i ∈ [r]}

such that
• the ends of Q11

i are x′
i, v1

i , of Q12
i are v1

i , xi, of Q21
i are y′

i, v2
i , and

of Q22
i are v2

i , yi;
• each path has length 7 and all its 6 internal vertices in Vflex;
• for each s, t ∈ {1, 2}, the path Qst

i has colours in Cflex ∪ {cst
i } and

uses the colour cst
i .
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Proof. — The collection can be found greedily using Lemma 4.6. Indeed
suppose we are not done yet and we still need to make a connection, say
from x′

i to v1
i . Let V0 ⊆ Vflex, C0 ⊆ Cflex be the vertices and colours already

used. Then, using r = ζn/24, we have |V0| = |C0| < 24r = ζn. Therefore,
we can apply the conclusion of Lemma 4.6 and find a rainbow path Qii

i

of length 7 with endpoints x′
i and v1

i , internal vertices in Vflex \ V0 and
colours in (Cflex \ C0) ∪ {c11

i }, that uses the colour c11
i . Therefore the claim

holds. □

Let V ′
flex, C′

flex be the vertices in Vflex and colours in Cflex used in the paths
in Claim 6.4. Then |V ′

flex| = |C′
flex| = 24r = ζn.

Let H1 = H − π−1
v (V ′

flex) and H2 = H − π−1
v (C′

flex). Then by choice
of H according to Lemma 4.10, H1 and H2 have perfect matchings M1
and M2 respectively. Recall that each pair (xi, yi) is associated with the
gadgets A1

i , . . . , A80k
i , two for every edge incident to each x ∈ Ri. For

xy ∈ E(H1) with x ∈ R and y ∈ S1 ∪S2, let PM1(xy) be the absorbing path
of the (πv(y), dx)-gadget if xy ∈ E(M1), and the avoiding path otherwise.
Similarly, for xy ∈ E(H2) with x ∈ R and y ∈ S1 ∪ S2, let PM2(xy) be the
absorbing path of the (wx, πc(y)-gadget if xy ∈ E(M2), and the avoiding
path otherwise. Then define

Pi :=
⋃

j∈[80k+1]

P j
i ∪

⋃
xy∈E(H1): x∈Ri

PM1(xy) ∪
⋃

xy∈E(H2): x∈Ri

PM2(xy) ,

and observe that Pi is a path with endpoints xi and yi. Each x ∈ Ri lies
in exactly one edge of M1 and exactly one edge of M2, so Pi consists of
2|Ri| = 2k absorbing paths (of length 10), 80k − 2k avoiding paths (of
length 9), and 80k + 1 connecting paths (of length 3). Hence, Pi has length
ℓ (cf. Equation (6.1)). Finally define

P ′
i := (Q11

i ∪ Q12
i ) ∪ Pi ∪ (Q21

i ∪ Q22
i ) ,

and observe that P ′
i is path with endpoints x′

i and y′
i and has length ℓ+4·7 =

ℓ + ℓ′. By construction, the paths P ′
i are rainbow, pairwise vertex- and

colour-disjoint, and use no vertex or colour in the embedding of F .
Recall that we obtained F from T by removing the internal vertices of

r bare paths of length ℓ + ℓ′ and that x′
i and y′

i were the images of the
endpoints of the i-th bare path. Therefore the image of F together with⋃r

i=1 P ′
i gives a rainbow embedding of T in G, as desired. □
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7. Concluding remarks

In this paper we studied the problem of finding rainbow subgraphs of
uniformly coloured randomly perturbed graphs. First, we gave a general re-
sult (Theorem 1.1) applicable when the number of colours is asymptotically
optimal. Then, we gave a result concerning rainbow bounded-degree span-
ning trees when the number of colours is exactly optimal (Theorem 1.3).
We showed that any given bounded-degree spanning tree typically appears
when a linear number of random edges are added to any dense graph, and
all the edges are uniformly coloured with colours in [n − 1]. It would be
interesting to improve our result to a universality statement: namely, is it
true that a uniformly coloured randomly perturbed graph with colours in
[n−1] typically contains a rainbow copy of every bounded-degree spanning
tree at once? The uncoloured universality question was already considered
by Böttcher, Han, Kohayakawa, Montgomery, Parczyk and Person [9], who
proved that for every α ∈ (0, 1) and d ∈ N there exists C = C(α, d) > 0
such that, if G0 is an n-vertex graph with δ(G0) ⩾ αn, then with high
probability G0 ∪ G(n, C/n) contains every n-vertex tree T with ∆(T ) ⩽ d.
We remark that the edge density is optimal (up to a constant factor).

Appendix A. Proof of Proposition 3.3

The proof of Proposition 3.3 uses the following result of Alon, Krivelevich
and Sudakov [3, Theorem 1.4], for which we need the following definition.
Given two positive numbers c and α < 1, a graph G is called an (α, c)-
expander if every subset of vertices X ⊆ V (G) with |X| ⩽ α|V (G)| satisfies
|NG(X)| ⩾ c|X|.

Theorem A.1 (Theorem 1.4 in [3]). — Let d ⩾ 2 be an integer and
0 < ε < 1/2. Then for n large enough the following holds. Let G be a
graph on n vertices of minimum degree δ and maximum degree ∆ such
that, with K := 20d2 log(2/ε)

ε , we have
(1) ∆2 ⩽ 1

K exp
(

δ
8K − 1

)
, and

(2) every induced subgraph G0 of G with minimum degree at least δ
2K

is a
(

1
2d+2 , d + 1

)
-expander.

Then G contains a copy of every tree T on at most (1 − ε)n vertices of
maximum degree d.
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Using Theorem A.1, the proof of Proposition 3.3 reduces to verifying that
the conditions of Theorem A.1 hold with high probability for a C/n-random
subgraph of a pseudorandom graph G. The argument and calculations fol-
low very closely those for the proof of Theorem 1.1 in [3], where this was
verified for G(n, C/n), which can be seen as the C/n-random subgraph of
the complete graph on n vertices.

We first show that a random subgraph of a pseudorandom graph with
high probability contains a nearly spanning subgraph with good local ex-
pansion property.

Lemma A.2 (cf. [3, Lemma 3.1]). — Let 1/C ≪ ε, 1/d and set θ :=
0.01ε and D := C/10. Let G be a pseudorandom graph on n vertices and
p := C/n. Then, with high probability, Gp contains a subgraph G∗ that
satisfies the following.

(1) |V (G∗)| ⩾ (1 − θ)n;
(2) D ⩽ degG∗(v) ⩽ 25D, for all v ∈ V (G∗);
(3) Every induced subgraph G0 of G∗ with δ(G0) ⩾ 100d log D is a

( 1
2d+2 , d + 1)-expander.

Then we state easy facts about random subgraphs of pseudorandom
graphs.

Lemma A.3 (cf. [3, Proposition 3.2]). — Let G be a pseudorandom
graph on n vertices and p = p(n) ∈ (0, 1) such that np > 20. With high
probability the following holds for Gp.

(1) For any disjoint vertex subsets A and B with |A| = a, |B| = b and
abp ⩾ 250n, the number of edges between them is at least abp/4
and at most 3abp/2.

(2) Every subset of vertices A of size a ⩽ n/4 spans at most apn/2
edges.

Proof. — For the first part of the claim note that, because G is pseudo-
random and ab ⩾ 250n, we have eG(A, B) ⩾ ab/3, so E[eGp(A, B)] ⩾ pab/3,
and then the lower bound follows from a standard application of Cher-
noff’s bound and the union bound over the at most 22n choices for A, B.
For the upper bound, the trivial upper bound eG(A, B) ⩽ ab implies
E[eGp

(A, B)] ⩽ abp and then again a standard application of Chernoff’s
bound and the union bound yield the desired result.

The second part follows directly from the second part of [3, Proposi-
tion 3.2] because we can couple G with G(n, p) so that G ⊆ G(n, p). □

We now deduce Proposition 3.3 from Lemma A.2.
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Proof of Proposition 3.3. — Let 1/C ≪ ε, 1/d and set θ := 0.01ε and
D := C/10. Let G∗ be the subgraph of Gp given by Lemma A.2. We verify
that G∗ satisfies the conditions of Theorem A.1 with parameters d and
ε1 := ε−θ

1−θ ∈ [0.99ε, ε], and so K = K(ε, d) = 20ε−1
1 d2 log (2/ε1).

Using that D ⩽ δ(G∗) ⩽ ∆(G∗) ⩽ 25D, D = C/10 and 1/C ≪ ε, 1/d,
we have

(∆(G∗))2 ⩽ 625D2 ⩽
1
K

exp
(

D

8K
− 1
)

⩽
1
K

exp
(

δ(G∗)
8K

− 1
)

and hence the first condition is satisfied.
To check the second condition, it suffices to show that

ε1 D

40d2 log (2/ε1) ⩾ 100d log D,

which follows from the fact that 1/C ≪ ε1, 1/d and that the function
D/ log D is increasing. Hence G∗ contains a copy of every tree of maximum
degree d and of up to (1 − ε1)(1 − θ)n ⩾ (1 − ε)n vertices. □

Finally we prove Lemma A.2

Proof of Lemma A.2. — Assume that the conclusions of Lemma A.3
hold. Let X be the set of θn/2 vertices of largest degree in Gp. Part 2
of Lemma A.3 implies that the number of edges in Gp[X] is at most
|X| pn/2 = 5D |X|. On the other hand, since p |X| (n − |X|) ⩾ 2Dθn ⩾
250n, using D−1 = 10C−1 ≪ ε = 100θ, Part 1 of Lemma A.3 implies that,
with high probability, eGp

(X, V (G) \ X) ⩽ 3 |X| np/2 = 15D |X|. Hence,∑
v∈X degGp

(v) ⩽ 25D |X|, which implies there is a vertex in X with de-
gree at most 25D. By the definition of X, it follows that Gp has at most
θn/2 vertices of degree greater than 25D.

Delete these vertices, denote the remaining graph by G′ and observe
|V (G′)| ⩾ (1 − θ/2)n. We greedily remove from G′ vertices of degree less
than D, until none are left. Suppose that we deleted at least θn/2 vertices.
Let Y be a subset of size θn/2 of the deleted vertices. Then degGp

(y, V (G′)\
Y ) ⩽ D for each y ∈ Y , so eGp(Y, V (G′) \ Y ) ⩽ D |Y |. On the other hand,
p |Y | |V (G′) \ Y | ⩾ 5Dθ(1 − θ)n ⩾ 250n (using D−1 ≪ θ), so Part 1 of
Lemma A.3 implies that eGp

(Y, V (G′)\Y ) ⩾ |Y | |V (G′) \ Y | p/4 > 2D |Y |,
which is a contradiction. Hence, the number of vertices that we deleted is at
most θn/2. Denote the resulting graph by G∗ and observe that it satisfies
the first two properties of the lemma.

Suppose G∗ fails to satisfy the third property of the lemma. Then there
exist U ⊆ V (G∗) such that G∗[U ] has minimum degree at least 100d log D
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and is not a ( 1
2d+2 , d+1)-expander. This implies there is X ⊆ U , of size t ⩽

1
2d+2 |U |, such that for the set Y := NG∗[U ](X) it holds that |Y | ⩽ (d + 1)t.

We first consider the case t ⩽ log D
D n. By the minimum degree condition,

we have eGp
(X, Y ) ⩾ 50dt log D. Let At be the event that there exist vertex

sets X, Y with |X| = t, |Y | ⩽ (d + 1)t, and eGp(X, Y ) ⩾ 50dt log D. Then
we can bound P[At] as follows, where we remark that for the first inequality
we use that the binomial coefficient is increasing until the middle layer and
that for the penultimate inequality we use t < (d+1)t < (d+1) log D

D n < n/2
since D−1 = 10C−1 ≪ d, and log(3e/10) ⩽ −0.1.

P[At] ⩽
(

n

t

)(
n

(d + 1)t

)(
t(d + 1)t

50dt log D

)
p50dt log D

⩽

(
en

t
·
(

en

(d + 1)t

)d+1
·
(

e(d + 1)t2p

50dt log D

)50d log D
)t

⩽

(
e ·
(n

t

)2d

·
(

e
d + 1

)d+1(
t/n

log D/D
· e(d + 1)

5d

)50d log D
)t

⩽

(
e ·
(

t/n

log D/D

)50d log D−2d

·
(

D

log D

)2d

·
(

3e
10

)50d log D
)t

⩽

(
e−5d log D+2d log D+1 ·

(
t/n

log D/D

)40d log D
)t

⩽

(
e−2d log D ·

(
t/n

log D/D

)40d log D
)t

.

For t < log n, this is at most(
log n/n

log D/D

)40d log D

⩽ n−79

and for log n ⩽ t ⩽ log D
D n it is at most

e−2d log D·log n ⩽ n−4

so in either case P[At] = o(n−1).
Finally we consider the case t ⩾ log D

D · n. Set Z := U \ (X ∪ Y ), and
notice that eGp(X, Z) = 0, since G∗[U ] is an induced subgraph of Gp. From
|U | ⩾ (2d + 2)t, |X| = t and |Y | ⩽ (d + 1)t it follows that |Z| ⩾ dt. Let Bt

be the event that there exist vertex subsets of size t and dt, with no edge
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between them in Gp. Then

P[Bt] ⩽
(

n

t

)(
n

dt

)
(1 − p)dt2

⩽

(
en

t
·
(en

dt

)d

· e−pdt

)t

⩽

((en

t

)2d

· e−pdt

)t

=
((en

t

)2
e−pt

)dt

⩽

((
en

n log D/D

)2
e− 10D

n · log D
D n

)dt

⩽
(
D2D−10)dt = o(n−1).

Hence G∗ fails to satisfy the third condition of the lemma with probability
at most

∑n
t=1(P[At] + P[Bt]) = o(1).

Therefore, by the union bound, we conclude that with high probability
G∗ satisfies all conditions of the Lemma. □
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