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INDUCED MINORS AND REGION INTERSECTION
GRAPHS

by Édouard BONNET & Robert HICKINGBOTHAM (*)

Abstract. — We show that for any positive integers g and t, there is a K
(1)
6 -

induced-minor-free graph of girth at least g that is not a region intersection graph
over the class of Kt-minor-free graphs. This answers in a strong form the re-
cently raised question of whether for every graph H there is a graph H′ such
that H-induced-minor-free graphs are region intersection graphs over H′-minor-
free graphs.

1. Introduction

Inspired by the success of Robertson and Seymour’s graph minor the-
ory [18], a recent line of work aims to extend this theory to the realm of
induced-minor-free classes.(1) Currently, far less is understood on classes
excluding an induced minor than on those excluding a minor. While H-
minor-free n-vertex graphs are known since the 90’s to have treewidth
OH(

√
n) [2], foreshadowed a decade earlier by the Lipton–Tarjan planar

separator theorem [14], only recently were H-induced-minor-free m-edge
graphs shown to have treewidth ÕH(

√
m) [12].

There are several open questions (for simplicity, we phrase all of them
as conjectures) on induced-minor-free classes.

• For any planar graph H, the independence number of any
H-induced-minor-free graph can be computed in polynomial time
(see [6, Question 8.2]).(2)

Keywords: Induced Minors, Region Intersection Graphs.
2020 Mathematics Subject Classification: 05C75, 05C62, 05C83.
(*) É. Bonnet has been supported by the French National Research Agency through the
project TWIN-WIDTH with reference number ANR-21-CE48-0014. R. Hickingbotham
was partially supported by the Belgian National Fund for Scientific Research (FNRS).
(1) All the relevant notions are defined in Section 2.
(2) Merely obtaining a quasipolynomial-time algorithm is also a wide open question.

https://doi.org/10.5802/igt.15


314 É. Bonnet & R. Hickingbotham

• For any planar graph H, every H-induced-minor-free graph ad-
mits a balanced separator dominated by a subset of size OH(1)
(Gartland–Lokshtanov’s conjecture [10]).

• For any planar graph H, every H-induced-minor-free graph has
treewidth at most linear in its maximum degree (see [4]).

• For any graph H, the independence number admits a polynomial-
time approximation scheme in H-induced-minor-free graphs.(3)

• For any planar graph H, weakly sparse H-induced-minor-free classes
have bounded twin-width (a special case is mentioned in [3]).

• For any planar graph H, every H-induced-minor-free graph has
treewidth at most linear in its Hadwiger number (see [5]).

• For any graph H, every H-induced-minor-free graph is quasi-isomet-
ric to an H-minor-free graph ([8, 11]).

All these questions are open within classes of large girth, a condition
which may make them more approachable. One more question, posed in-
dependently by Lokshtanov [15] and McCarty [16], is whether region in-
tersection graphs could provide a bridge between the structure of minors
and induced minors. A graph G is a region intersection graph (RIG) over
a graph H if there exists a collection R = (Rv ⊆ H : v ∈ V (G)) of connected
subgraphs of H such that uv ∈ E(G) if and only if V (Ru) ∩ V (Rv) ̸= ∅.
We call H the host graph of G.

Question 1.1. — Is every graph class excluding a fixed induced minor
included in the region intersection graphs of a class excluding a fixed minor?

If true, one could then work with the host graph and benefit from its
decomposition given by the Graph Minor Structure Theorem [19]. Wieder-
recht asked a related question of whether one can determine if a given
induced-minor-free class is a region intersection graph over a minor-free
class [21].

Region intersection graphs were introduced by Lee [13] as a generalization
of the well-studied class of string graphs (intersection graph of curves on
the plane). Indeed, a graph is a string graph if and only if it is a region
intersection graph over some planar graph. The class of string graphs does
not exclude any graph as a minor, but excludes any 1-subdivision of a non-
planar graph as an induced minor [20]. More generally, Lee [13] proved the
following relationship between region intersection graphs and minors.

(3) This question has been informally discussed within the wider graph theory
community.
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Lemma 1.2 ([13]). — For every graph G, if a graph H is not a minor of
G then any graph that contains H(1) as an induced minor is not a region
intersection graph over G.

Thus RIGs over an H-minor-free class are examples of classes excluding
an induced minor. The theory on region intersection graphs, and mainly on
string graphs, is more advanced than that of induced-minor-free graphs. For
instance, RIGs over Kt-minor-free classes can be Ot(1)-vertex-colored (or
Ot(1)-edge-colored) such that every monochromatic connected component
has bounded weak diameter [1, 13]. Such a result is useful in various con-
texts, and it would resolve several conjectures for classes excluding a fixed
induced minor (see for instance [4, 12]). One way to achieve that would be
via a positive answer to Conjecture 1.1.

Unfortunately, we answer Conjecture 1.1 negatively, and perhaps more
surprisingly, even within classes of arbitrarily large girth.

Theorem 1.3. — For any positive integers t and g, there is a K
(1)
6 -

induced-minor-free graph of girth at least g that is not in RIG({H : H is
Kt-minor-free}).

The bridge between induced-minor-freeness and minor-freeness (if it ex-
ists) is not given straightforwardly by region intersection graphs. Our con-
struction for proving Theorem 1.3 is an extension of the so-called Pohoata–
Davies grids [7, 17] (see Figure 1.1), a key family of graphs in the study of
induced subgraphs and tree-decompositions.

Hopefully, our construction steers the search for a link between induced-
minor-freeness and minor-freeness in a more fortunate direction.

Figure 1.1. The Pohoata–Davies 6 × 6 grid.
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2. Preliminaries

Given an integer i, we denote by [i] the set of integers that are at least
1 and at most i.

2.1. Standard graph-theoretic notation

We denote by V (G) and E(G) the set of vertices and edges of a graph
G, respectively. A graph H is a subgraph of a graph G, denoted by H ⊆ G,
if H can be obtained from G by vertex and edge deletions. Graph H is
an induced subgraph of G if H is obtained from G by vertex deletions only.
For S ⊆ V (G), the subgraph of G induced by S, denoted G[S], is obtained
by removing from G all the vertices that are not in S. Then G − S is a
short-hand for G[V (G) \ S].

A set X ⊆ V (G) is connected (in G) if G[X] has a single connected
component. The girth of a graph is the number of vertices of one of its
shortest cycles, and ∞ if the graph is acyclic. A graph class is weakly
sparse if it excludes Kt,t as a subgraph for some finite integer t. A balanced
separator of an n-vertex graph G is a set X ⊆ V (G) such that G − X has
no connected component on more than n/2 vertices.

If G is a graph and ℓ is a positive integer, then G(ℓ) denotes the ℓ-
subdivision of G (replacing every edge of G by a path with ℓ + 1 edges),
and ℓG denotes the graph obtained from ℓ disjoint copies of G. We call the
original vertices of V (G) in G(ℓ) branching vertices, and the added vertices
(which have degree 2) subdivision vertices. We say that two disjoint sets
X, Y ⊆ V (G) are anti-complete if there is no edge in G with one end in X

and the other in Y . The diameter of G is defined as maxu,v∈V (G) dG(u, v),
where dG(u, v) is the number of edges in a shortest path between u and v.
The weak diameter of S in G for S ⊆ V (G) is equal to maxu,v∈S dG(u, v).

2.2. Tree-decomposition

A tree-decomposition of a graph G is a collection T = (Wx : x ∈ V (T ))
of subsets of V (G) (called bags) indexed by the vertices of a tree T , such
that

• for every edge uv ∈ E(G), some bag Wx contains both u and v, and
• for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a

non-empty (connected) subtree of T .
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The width of T is max{|Wx| : x ∈ V (T )} − 1. The treewidth of G is
the minimum width of a tree-decomposition of G. The adhesion of T
is max{|Wx ∩ Wy| : xy ∈ E(T )}. The torso of a bag Wx (with respect
to T ), denoted by G⟨Wx⟩, is the graph obtained from the induced sub-
graph G[Wx] by adding edges so that Wx ∩ Wy is a clique for each edge
xy ∈ E(T ). A path-decomposition is a tree-decomposition in which the un-
derlying tree is a path, simply denoted by the corresponding sequence of
bags (W1, . . . , Wn).

2.3. Minors, induced minors, and region intersection graphs

A graph H is a minor of a graph G if H is isomorphic to a graph that
can be obtained from a subgraph of G by contracting edges. Equivalently,
H is a minor of G if there exists a model M = (Xv ⊆ G : v ∈ V (H)) of H

in G which is a collection of disjoint connected subgraphs of G such that
Xu and Xv are adjacent whenever uv ∈ E(H). Each Xu is called a branch
set. A graph H is an induced minor of a graph G if H is isomorphic to
a graph that can be obtained from an induced subgraph of G by contracting
edges. Equivalently, H is an induced minor of G if there is a model M =
(Xv ⊆ G : v ∈ V (H)) of H in G with the additional constraint that Xu

and Xv are adjacent if and only if uv ∈ E(H). A graph G is H-minor-free
(resp. H-induced-minor-free) if H is not a minor (resp. an induced minor)
of G.

Recall that a graph G is a region intersection graph over a graph H if
there exists a collection R = (Rv ⊆ H : v ∈ V (G)) of connected subgraphs
of H such that uv ∈ E(G) if and only if V (Ru) ∩ V (Rv) ̸= ∅. We denote by
RIG(H) the class of graphs that are region intersection graphs over H. By
extension, given a graph class C, RIG(C) denotes the class of graphs that
are region intersection graphs over some graph of C.

2.4. Graph minor structure theorem

The Graph Minor Structure Theorem of Robertson and Seymour [19]
states that every Kt-minor-free graph has a tree-decomposition with adhe-
sion of bounded size such that each torso can be constructed using three
ingredients: graphs on surfaces, vortices, and apices. To describe this for-
mally, we need the following definitions.
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Let G0 be a graph embedded in a surface Σ. A closed disk D in Σ is G0-
clean if its only points of intersection with G0 are vertices of G0 that lie on
the boundary of D. Let x1, . . . , xb be the vertices of G0 on the boundary
of D in the order around D. A D-vortex (with respect to G0) of a graph
H is a path-decomposition (W1, . . . , Wb) of H such that xi ∈ Wi for each
i ∈ [b], and V (G0 ∩ H) = {x1, . . . , xb}.

For integers g, p, a ⩾ 0 and k ⩾ 1, a graph G is (g, p, k, a)-almost-
embeddable if for some set Z ⊆ V (G) with |Z| ⩽ a, there are graphs
G0, G1, . . . , Gp such that:

• G − Z = G0 ∪ G1 ∪ · · · ∪ Gp,
• G1, . . . , Gp are pairwise vertex-disjoint,
• G0 is embedded in a surface Σ of Euler genus at most g,
• there are p pairwise disjoint G0-clean closed disks D1, . . . , Dp in Σ,

and
• for i ∈ [p], there is a Di-vortex (W1, . . . , Wbi

) of Gi of width at
most k.

The vertices in Z are called apex vertices—they can be adjacent to
any vertex in G. A graph is ℓ-almost-embeddable if it is (g, p, k, a)-almost-
embeddable for some ℓ ⩾ g, p, k, a. A graph is apex-free ℓ-almost-embeddable
if it is (g, p, k, 0)-almost-embeddable for some ℓ ⩾ g, p, k.

Theorem 2.1 ([19]). — For every positive integer t, there exists an
integer ℓ such that every Kt-minor-free graph has a tree-decomposition of
adhesion at most ℓ such that each torso is ℓ-almost-embeddable.

For every positive integer n, let An denote the apex n×n grid; that is, the
graph obtained from the n × n grid by adding a universal vertex. The next
theorem concerns the structure of apex-minor-free graphs. The statement
is implied by a characterization of apex-minor-free graphs [9, Theorem 25,
(6) ⇒ (5)].

Theorem 2.2 ([9]). — For every positive integer ℓ, there exists some
integer n such that every graph that has a tree-decomposition of adhesion
at most ℓ where each torso is apex-free ℓ-almost-embeddable is An-minor-
free.

Finally, we will need the notion of clique-sum. Let k be a positive integer,
C1 = {v1, . . . , vk}, a clique in a graph G1, C2 = {w1, . . . , wk}, a clique in
a graph G2. A k-clique-sum of G1 and G2 is any graph G obtained from
the disjoint union of G1 and G2 by identifying vi and wi for each i ∈ [k]
and then possibly deleting some edges in C1 (= C2).
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3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 first for graphs of girth 5. We then
explain how the construction can be generalized so that the result holds
for arbitrarily large girth.

Theorem 3.1. — For every positive integer t, there is a K
(1)
6 -induced-

minor-free graph G of girth 5 such that G is not in RIG({H : H is Kt-minor-
free}).

We fix any positive integer t. By Theorem 2.1, there exists some integer
ℓ := ℓ(t) such that every Kt-minor-free graph has a tree-decomposition
of adhesion at most ℓ where each torso is ℓ-almost-embeddable. By Theo-
rem 2.2, there exists some integer n := n(ℓ) such that every graph that has
a tree-decomposition of adhesion at most ℓ where each torso is apex-free
ℓ-almost-embeddable is An-minor-free. We may assume that n ⩾ ℓ + 1. We
now construct our graph G.

Construction of G

Since the n × n grid is K5-minor-free, the apex n × n grid An is K6-
minor-free. Let Bn be nA

(1)
n , that is, the disjoint union of n copies of the

1-subdivision of An, also equal to the 1-subdivision of the disjoint union
of n copies of An. We now set a total order ≺ of V (Bn), and a traceable
(i.e., admitting a Hamiltonian path) spanning supergraph B′

n of Bn, whose
Hamiltonian path defines the successor relation of ≺.

The vertices of each copy of A
(1)
n appear consecutively along ≺. The graph

B′
n is obtained by adding to each copy of A

(1)
n the red edges of Figure 3.1.

Note that this includes an edge between the top-left vertex of the grid and
the apex of the previous copy of A

(1)
n (leftmost vertex in the figure). The

order ≺ within each A
(1)
n is given by the Hamiltonian path in blue, starting

at the top-left vertex of the grid to the apex. Like Bn, the graph B′
n is also

K6-minor-free. The graph B′
n is not part of the construction and we will

only use it in the proof of Claim 3.3.
To finish the construction, we add to Bn the disjoint union of n paths

P1, . . . , Pn of length 2|V (Bn)| − 1, and make for every i ∈ [|V (Bn)|] and
j ∈ [n], the (2i − 1)-st vertex of Pj , denoted by pj,i, adjacent to the i-th
vertex of Bn along ≺, denoted by bi. Call G the resulting graph. As a side
note, if we replaced each copy of A

(1)
n in G by K1, then the graph obtained

is a Pohoata–Davies Grid (see Figure 1.1).
The following three lemmas prove Theorem 3.1.
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Figure 3.1. The graphs Bn, B′
n and the order ≺. We only represented

one entire copy of A
(1)
n . Black edges represent Bn. Together with the

red edges, they form B′
n. Every vertex filled in gray is adjacent to

the apex vertex to the right (we only drew some of these edges for
legibility). The Hamiltonian path of B′

n in blue defines the successor
relation of ≺.

Lemma 3.2. — G has girth at least 5.

Proof. — Bn is the 1-subdivision of a simple graph, hence has girth
at least 6. G − V (Bn) is a disjoint union of paths, thus does not contain
any cycle. Any cycle going through V (G) \ V (Bn) has at least two consec-
utive edges within G − V (Bn). We conclude as no distinct pair of vertices
within the same connected component of V (G) \ V (Bn) shares a neighbor
in V (Bn). □

The proof of the next lemma does not use the exact nature of Bn and
its augmentation B′

n with a Hamiltonian path, only that B′
n is K6-minor-

free, and that the adjacencies to the disjoint paths P1, P2, . . . follow this
Hamiltonian path.

Lemma 3.3. — G is K
(1)
6 -induced-minor-free.

Proof. — Assume for the sake of contradiction that G admits K
(1)
6 as an

induced minor. We will then build a minor model of K6 in B′
n, which, we

know, does not exist.
Let M be an induced minor model of K

(1)
6 in G such that

• every branch set of a subdivision vertex of K
(1)
6 is a singleton,
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• if such a singleton is on some Pj and its two neighbors on Pj are
in the two adjacent branch sets (one in each), then the singleton
cannot be a vertex pj,i (it has to be a degree-2 vertex in between
some pj,i and pj,i+1), and

• each branch set is inclusion-wise minimal.
It is easy to see that this can always be done. Let X1, . . . , X6 ∈ M be the
branch sets corresponding to the branching vertices of K

(1)
6 . We denote by

{sk,k′} the branch set (of the subdivision vertex) adjacent to Xk and Xk′ ,
for k ̸= k′ ∈ [6]. For each k ∈ [6], let

Yk := (Xk ∩ V (B′
n)) ∪

{
bi :

∃ j ∈ [n], pj,i ∈ Xk and
∄ k′ < k ∈ [6], j′ ∈ [n], pj′,i ∈ Xk′

}
,

and Y ′
k := Yk ∪ {sk,k′ ∈ V (B′

n) \ (Y1 ∪ · · · ∪ Y6) : k < k′}.

We now show that Y ′
1 , . . . , Y ′

6 is a minor model of K6 in B′
n.

Claim 1. — The sets Y ′
1 , . . . , Y ′

6 are pairwise disjoint.

Proof of Claim. — Suppose there exists some bi ∈ Y ′
k ∩ Y ′

k′ with k < k′.
From the definition of Y1, . . . , Y6 and Y ′

1 , . . . , Y ′
6 , it should be that bi ∈ Xk

and pj,i ∈ Xk′ for some j ∈ [n] or that bi ∈ Xk′ and pj,i ∈ Xk for some
j ∈ [n]. But that would make Xk and Xk′ adjacent. ♢

To further show that the sets Y ′
1 , . . . , Y ′

6 are connected and pairwise
adjacent in B′

n, we need the following notion and claims. An interval I

of some Xk is a subset of consecutive positive integers such that there is
a connected component J of G[Xk ∩ V (Pj)] for some j ∈ [n] such that
{i : pj,i ∈ V (J)} = I.

Claim 2. — For any k ̸= k′ ∈ [6], any interval I of Xk, and any interval
I ′ of Xk′ , it cannot be that I ⊆ I ′ (and symmetrically I ′ ⊆ I). Furthermore,
at most one vertex of {bi : i ∈ I ∩ I ′} can be in a branch set of M,
namely sk,k′ .

Proof of Claim. — If I ⊆ I ′, then Xk is a subpath of Pj for some j ∈ [n],
as otherwise Xk and Xk′ would be adjacent. But then Xk has at most two
neighbors that are not neighbors of Xk′ , a contradiction to realize the 4
branch sets adjacent to Xk but not to Xk′ . The rest of the claim follows
because {sk,k′} is the only branch set adjacent to both Xk and Xk′ , and
Xk and Xk′ are non-adjacent. ♢

We can extend a bit the previous claim.

Claim 3. — For any pairwise distinct k, k′, k′′ ∈ [6], any interval I

of Xk, any interval I ′ of Xk′ , and any interval I ′′ of Xk′′ , it cannot be that
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I ⊆ I ′ ∪ I ′′. Furthermore, if sk′,k′′ = pj,i for some j ∈ [n], it cannot be that
I ⊆ I ′ ∪ I ′′ ∪ {i}.

Proof of Claim. — Again, any such inclusion would imply that Xk is
a subpath of some Pj . But then Xk has at most two neighbors that are not
neighbors of Xk′ ∪ Xk′′ (∪ {sk′,k′′}), a contradiction to realize the 3 branch
sets adjacent to Xk but not to Xk′ nor Xk′′ . ♢

As M is minimal, Claims 2 and 3 imply in particular that there is at most
one pair I, I ′ of intervals of Xk, Xk′ with I ∩ I ′ ̸= ∅, per k ̸= k′ ∈ [6]. As
another direct consequence of Claims 2 and 3, we get the following.

Claim 4. — For any pairwise distinct k, k′, k′′ ∈ [6], any interval I of Xk

and any interval I ′ of Xk′ such that I ∩ I ′ ̸= ∅ and min(I) < min(I ′), there
is no i ∈ [min(I ′) − 1, max(I) + 1] such that pj,i ∈ Xk′′ for some j ∈ [n] (or
bi ∈ Xk′′).

The next two claims complete the proof.

Claim 5. — The sets Y ′
1 , . . . , Y ′

6 are connected in B′
n.

Proof of Claim. — For any k ∈ [6], and any u, v ∈ Y ′
k, we exhibit a u–v

path P in B′
n such that V (P ) ⊆ Y ′

k. (As we do not need to show that P is
a path, we call it so, but only argue that it is a walk, which is sufficient.)
Let u′ ∈ V (G) (resp. v′ ∈ V (G)) be the vertex in (V (G) \ V (B′

n)) ∩ Xk

causing that u ∈ Y ′
k (resp v ∈ Y ′

k) if this applies, or u′ := u (resp. v′ := v),
otherwise. Let P ′ be a u′–v′ path in G such that V (P ′) \ {u′, v′} ⊆ Xk.
Observe that u′ and v′ may be equal to some sk,k′ with k < k′, and thus not
be in Xk themselves. In which case, we simply run the following arguments
with their neighbors in P ′ (which are in Xk). Hence, we may as well suppose
that u′, v′ ∈ Xk.

If P ′ is a subpath of some Pj , we have u′ = pj,i and v′ = pj,i′ , no Xk′

with k′ < k contains some vertex pj′,i or pj′,i′ , and no other Xk′ contains
bi′′ for any i′′ between i and i′. By Claim 2, it means that for any integer
i′′ between i and i′, no Xk′ with k′ < k contains some vertex pj′,i′′ , and
no other Xk′ contains bi′′ . In particular, all such vertices bi′′ are in Y ′

k, and
this makes the path P between u and v.

More generally, the path P ′ alternates between maximal subpaths con-
tained in V (G) \ V (Bn) and maximal subpaths contained in V (Bn). The
latter are kept to build P . We then mimic each maximal subpath contained
in V (G) \ V (Bn) with a path of B′

n included in Y ′
k, with the appropri-

ate endpoints. By Claim 2, in P ′, every maximal subpath pj,i . . . pj,i′ in
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V (G) \ V (Bn) surrounded by two subpaths in V (Bn) is such that the cor-
responding vertices bi . . . bi′ are all in Y ′

k, hence form the desired subpath
of P in B′

n.
We finally move to the case when P ′ starts with a subpath u′ = pj,i . . . pj,i′

̸= v′ maximal in V (G)\V (Bn); the case when P ′ ends with such a maximal
subpath is dealt with symmetrically. We know that bi′ ∈ Xk, no Xk′ with
k′ < k contains some vertex pj′,i, and no other Xk′ contains some vertex
bi′′ where i′′ is between i and i′. Thus by Claim 2, all the vertices bi . . . bi′

are in Y ′
k, the desired subpath of P in B′

n. ♢

Claim 6. — The sets Y ′
1 , . . . , Y ′

6 are pairwise adjacent in B′
n.

Proof of Claim. — For any k ̸= k′ ∈ [6], let u ∈ Xk, u′ ∈ Xk′ be such
that usk,k′ , u′sk,k′ ∈ E(G).

Assume first that sk,k′ = bi for some i ∈ [|V (B′
n)|]. If at most one

ℓ ∈ {k, k′} (thus, at most one ℓ ∈ [6]) is such that pj,i ∈ Xℓ for some j ∈ [n],
then either sk,k′ ∈ Y ′

k and u′ ∈ V (B′
n), or sk,k′ ∈ Y ′

k′ and u ∈ V (B′
n); so Y ′

k

and Y ′
k′ are adjacent in B′

n. If, instead, there are j, j′ such that pj,i ∈ Xk and
pj′,i ∈ Xk′ , consider the intervals I, I ′ of Xk, Xk′ associated to pj,i, pj′,i.
Claim 4 implies that there is some i′ such that bi′ ∈ Y ′

k and bi′+1 ∈ Y ′
k′ ; so,

again, Y ′
k and Y ′

k′ are adjacent in B′
n.

We next assume that sk,k′ ∈ V (G) \ V (B′
n).

First consider the case both u and u′ are also in V (G) \ V (B′
n). Let I, I ′

be their associated interval, and assume without loss of generality that
max(I) < min(I ′). By the second item of the conditions satisfied by M,
min(I ′) − max(I) = 1. By Claim 3, there is no k′′ ∈ [6] \ {k, k′} such that
Xk′′ contains some vertex pj,i or bi with i ∈ [max(I), min(I ′)]. Besides,
Xk (resp. Xk′) contains no vertex pj,min(I′) nor bmin(I′) (resp. pj,max(I) nor
bmax(I)). Therefore, bmax(I) ∈ Y ′

k and bmin(I′) = bmax(I)+1 ∈ Y ′
k′ , thus Y ′

k

and Y ′
k′ are adjacent in B′

n.
Finally consider, without loss of generality, that sk,k′ = pj,i, pj,i−1 ∈ Xk,

and bi ∈ Xk′ . By Claim 2, there is no ℓ ∈ [6] \ {k} such that Xℓ contains
some vertex pj′,i−1 nor bi−1. Thus bi−1 ∈ Y ′

k. As bi ∈ Y ′
k′ , we have that Y ′

k

and Y ′
k′ are adjacent. ♢

Claims 1, 5 and 6 imply that Y ′
1 , . . . , Y ′

6 is a K6 minor model in B′
n;

a contradiction. □

Lemma 3.4. — For every Kt-minor-free graph H, G is not a region
intersection graph over H.

Proof. — Suppose, for contradiction, that there is a Kt-minor-free graph
H for which G ∈ RIG(H). Let R = (Rv ⊆ H : v ∈ V (G)) be a collection
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of connected subgraphs of H such that uv ∈ E(G) if and only if V (Ru) ∩
V (Rv) ̸= ∅. By Theorem 2.1, H has a tree-decomposition T = (Wx : x ∈
V (T )) of adhesion at most ℓ where each torso is ℓ-almost-embeddable.

We claim that there is an x ∈ V (T ) such that the bag Wx intersects
V (Rv) for each vertex v ∈ V (Bn). For each vertex v ∈ V (Bn), the set
{x ∈ V (T ) : V (Rv) ∩ Wx ̸= ∅} is a subtree of T . By the Helly property for
subtrees, it suffices to show that any two such subtrees meet.

Assume, for contradiction, that there exist u, v ∈ V (Bn) such that V (Ru)
and V (Rv) do not intersect a common bag. Since T has adhesion at most ℓ,
there is a set S ⊆ V (H) with |S| ⩽ ℓ whose deletion separates V (Ru) and
V (Rv). By construction, G contains n u–v paths uQ1v, . . . , uQnv with Qi ⊆
Pi. So, for each i ∈ [n], the connected subgraph Q⋆

i =
⋃

(Rp : p ∈ V (Qi)) of
H connects Ru to Rv, hence meets S. Since Q1, . . . , Qn are pairwise anti-
complete, the subgraphs Q⋆

1, . . . , Q⋆
n are pairwise vertex-disjoint, forcing

|S| ⩾ n ⩾ ℓ + 1, a contradiction.
Therefore, there is a bag Wx in T intersecting all regions Rv for v ∈

V (Bn). Since every adhesion set is a clique in a torso, V (Rv) ∩ Wx induces
a connected subgraph R′

v in H⟨Wx⟩ for every v ∈ V (Bn). However, there
may be an edge uv ∈ E(Bn) for which V (R′

u) ∩ V (R′
v) = ∅. Nevertheless,

since V (Ru) ∩ V (Rv) ̸= ∅, there is an adhesion set S = Wx ∩ Wy (for
some edge xy ∈ E(T )) such that V (R′

u) ∩ S ̸= ∅ and V (R′
v) ∩ S ̸= ∅.

Choose vertices a ∈ V (R′
u) ∩ S and b ∈ V (R′

v) ∩ S. Then ab ∈ E(H⟨Wx⟩).
Add a vertex w to H⟨Wx⟩ adjacent to both a and b then include w in the
connected subgraphs R′

u and R′
v. Repeating this procedure for every such

edge produces a supergraph H ′ of H⟨Wx⟩ built by performing 2-clique-
sums with triangles together with a collection (R′

v ⊆ H ′ : v ∈ V (Bn))
of connected subgraphs in H ′ that realizes Bn as a region intersection
graph over H ′.

Let Z ⊆ Wx be the set of apex vertices in H⟨Wx⟩. Since |Z| ⩽ ℓ and Bn

consists of n ⩾ ℓ+1 anti-complete copies of A
(1)
n , there exists a copy of A

(1)
n ,

denoted as Ã
(1)
n , for which

⋃
(V (Rx) : x ∈ V (Ã(1)

n )) ∩ Z = ∅. Let H̃ be the
subgraph of H ′ induced by

⋃
(V (Rx) : x ∈ V (Ã(1)

n )). Then V (H̃)∩Z = ∅. As
such, H̃ has a tree-decomposition with adhesion at most 2 where one torso is
an apex-free ℓ-almost embeddable graph and the other torsos are triangles.
By Theorem 2.2, H̃ is An-minor-free. However, since Ã

(1)
n ∈ RIG(H̃) and

Ã
(1)
n is isomorphic to A

(1)
n , Lemma 1.2 implies An is a minor of H̃, giving

us the desired contradiction. □

We now explain how to modify the construction in Theorem 3.1 to force
the girth to be arbitrarily large. Fix positive integer g. Define Bg,n to be
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nA
(g)
n , that is the disjoint union of n copies of the g-subdivision of An. Then

Bg,n has girth 3(g + 1). We define a total order ≺ of V (Bg,n) by using the
same strategy of that given by Figure 3.1. Similar to before, we add to Bg,n

the disjoint union of n paths P1, . . . , Pn of length g|V (Bg,n)|−1 and make,
for every i ∈ [|V (Bg,n)|] and j ∈ [n], the (gi − 1)-st vertex of Pj adjacent
to the i-th vertex of Bg,n along ≺. Call the resulting graph Gg,n. Since
Gg,n − Bg,n is a disjoint union of paths, it does not contain any cycle. Any
cycle going through V (Gg,n) \ V (Bg,n) has at least g − 1 consecutive edges
within Gg,n − V (Bg,n). Since no pair of vertices within the same connected
component of V (Gg,n)\V (Bg,n) shares a neighbor in V (Bg,n), we conclude
that every cycle in Gg,n has length at least g. Since Claims 3.3 and 3.4 also
generalize to Gg,n, this completes the proof of Theorem 1.3.
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