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POSITIVE CO-DEGREE DENSITIES AND JUMPS

by József BALOGH, Anastasia HALFPAP,
Bernard LIDICKÝ & Cory PALMER (*)

Abstract. — The minimum positive co-degree of a nonempty r-graph H, de-
noted by δ+

r−1(H), is the largest integer k such that for every (r−1)-set S ⊂ V (H),
if S is contained in a hyperedge of H, then S is contained in at least k hyperedges of
H. Given a family F of r-graphs, the positive co-degree Turán function co+ex(n, F)
is the maximum of δ+

r−1(H) over all n-vertex r-graphs H containing no member

of F . The positive co-degree density of F is γ+(F) = lim
n→∞

co+ex(n,F)
n

. While the

existence of γ+(F) is proved for all families F , only few positive co-degree densities
are known exactly.

For a fixed r ⩾ 2, we call α ∈ [0, 1] an achievable value if there exists a family of
r-graphs F with γ+(F) = α, and call α a jump if for some δ > 0, there is no family
F with γ+(F) ∈ (α, α + δ). Halfpap, Lemons, and Palmer [27] showed that every
α ∈ [0, 1

r
) is a jump. We extend this result by showing that every α ∈ [0, 2

2r−1 ) is
a jump. We also show that for r = 3, the set of achievable values is infinite, more
precisely, k−2

2k−3 for every k ⩾ 4 is achievable. Finally, we determine two additional
achievable values for r = 3 using flag algebra calculations.

1. Introduction

An r-graph is a hypergraph in which all hyperedges have size r. We
often refer to the hyperedges of an r-graph as r-edges. Given a family of
r-graphs F , the Turán number ex(n, F) is the maximum number of r-
edges possible in an n-vertex r-graph that contains no member of F as
a subhypergraph. When r = 2, the function ex(n, F ) is well-studied and
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relatively well-understood. Given a set of r-graphs F , we define the Turán
density of F to be

π(F) := lim
n→∞

ex(n, F)(
n
r

) .

The Erdős–Stone Theorem [18] as pointed out by Erdős–Simonovits [17]
determines the Turán density of every 2-graph as a function of its chromatic
number.

Theorem 1.1 (Erdős–Stone). — Let F be a 2-graph with χ(F ) = k.
Then π(F ) = 1 − 1

k−1 .

Note that an extension of Theorem 1.1 also claims that for every family
F of 2-graphs, π(F) is equal to the minimum of 1 − 1/(χ(F ) − 1) over
F ∈ F . While Theorem 1.1 does not give us perfect information about
Turán numbers (in particular, for bipartite graphs F , it only demonstrates
that ex(n, F ) = o(n2)), it yields a good “approximate” understanding of
Turán numbers by fully describing Turán densities.

For r ⩾ 3, we do not have an analogue to Theorem 1.1, and much
less is known about Turán densities. Even π(F) could be smaller than
min{π(F ) : F ∈ F}, as observed by Balogh [4]. Not only do we lack a
general theory, but the Turán densities of many small r-graphs remain un-
known, despite great effort. Famously, the Turán density of the tetrahedron
K3

4 is still undetermined. The difficulty of determining Turán densities for
hypergraphs has motivated the study of various other hypergraph extremal
functions, typically maximizing some variant of the minimum degree. In
particular, given an r-graph H, the co-degree of a set S ∈

(
V (H)
r−1

)
is the

number of r-edges containing S, and the minimum co-degree of H, denoted
by δr−1(H), is the smallest co-degree realized by an (r − 1)-set contained
in V (H). The co-degree Turán function of a family of r-graphs F , denoted
by coex(n, F), is the largest possible minimum co-degree of an n-vertex
r-graph containing no member of F as a subhypergraph.

Mubayi and Zhao [35] showed that the co-degree density

γ(F) := lim
n→∞

coex(n, F)
n

exists for every family of r-graphs F and studied the general behavior of
coex(n, F). Note that for every family of 2-graphs F we have γ(F) = π(F);
however, for r ⩾ 3, co-degree Turán problems are not equivalent to Turán
problems, and co-degree density does not behave in the manner suggested
by Theorem 1.1. We first define the notion of a jump in density.
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Definition 1.2. — Fix r ⩾ 2. Suppose φ is a function that maps fam-
ilies of r-graphs to [0, 1]. We say that α ∈ [0, 1) is a φ-jump if there exists
δ ∈ (0, 1 − α) such that for no family F of r-graphs, φ(F) ∈ (α, α + δ).

While Theorem 1.1 shows that co-degree density (and Turán density)
jumps everywhere when r = 2, Mubayi and Zhao showed that co-degree
density does not jump when r ⩾ 3.

Theorem 1.3 (Mubayi–Zhao [35]). — For r ⩾ 3, no α ∈ [0, 1) is a
γ-jump.

This co-degree phenomenon was further investigated in [15, 39].
We remark that Theorem 1.3 suggests a substantial difference in behavior

between Turán and co-degree Turán problems for hypergraphs. We know
for every r ⩾ 3 that every α ∈ [0, r!/rr) is a π-jump. On the other hand, π

is also known to not jump in infinitely many places for r ⩾ 3; see [3, 24].
The minimum positive co-degree of an r-graph H is the largest integer k

such that, whenever S ∈
(

V (H)
r−1

)
is contained in some r-edge of H, then S

is contained in at least k r-edges of H. The edgeless r-graph is defined to
have positive co-degree zero. We denote the minimum positive co-degree of
H by δ+

r−1(H). We define the positive co-degree Turán number, denoted by
co+ex(n, F), to be the largest possible minimum positive co-degree of an
n-vertex r-graph containing no member of F as a subhypergraph.

Balogh, Lemons, and Palmer [6] introduced the minimum positive co-
degree as an alternative notion of minimum degree in r-graphs. Since then
this parameter has already been studied from several angles. The concept of
co+ex(n, F) was recently introduced by Halfpap, Lemons, and Palmer [27].
The investigation of minimum positive co-degree as an extremal parameter
is partially motivated by the admissibility of constructions that mimic the
extremal graphs for classical questions. For example, given an r-graph H,
the t-blow-up H[t] of H is the r-graph obtained by replacing each vertex
vi ∈ V (H) with a class Vi of t vertices, where a set of r vertices spans
an r-edge if and only if they belong to r distinct classes of H[t] which
correspond to an r-edge in H. In classical Turán theory, graph blow-ups
yield extremal or nearly extremal constructions for all non-bipartite for-
bidden graphs. Blow-ups also occur as extremal examples for other types
of thresholds — for instance, one of the constructions demonstrating the
tightness of Dirac’s Theorem is a slightly unbalanced blow-up of an edge
(i.e., a complete bipartite graph).

For r ⩾ 3 and every r-graph H, a sufficiently large blow-up of H has min-
imum co-degree 0, which means that even after adding o(n3) hyperedges,
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blow-ups will not provide extremal constructions for minimum co-degree
density problems. However, H[t] inherits the positive co-degree proper-
ties of H. Thus, blow-ups (as well as other constructions with co-degree
0 sets, such as r-graphs containing large strongly independent sets or mul-
tiple components) are potential extremal examples for positive co-degree
problems. Previous results suggest that extremal constructions for positive
co-degree problems in fact do often look analogous to classical extremal
constructions. See [27] for extremal constructions avoiding some small 3-
graphs, and [28] on positive co-degree analogs of Dirac’s Theorem, for which
the extremal constructions also naturally generalize the graph extremal ex-
amples (and have minimum co-degree 0). Due to the expanded range of po-
tential constructions, co+ex(n, F) and coex(n, F) are generally not equal,
and they appear to behave differently.

Define the positive co-degree density of a family of r-graphs F as the
limit

γ+(F) := lim
n→∞

co+ex(n, F)
n

.

Existence of γ+(F ) was established by Halfpap, Lemons, and Palmer [27]
via a constructive argument, which can be generalized to finite families F .
Pikhurko [40] gave a probabilistic argument establishing that γ+(F) exists
for all families F .

Proposition 1.4 (Halfpap–Lemons–Palmer [27]). — Fix r ⩾ 2 and let
F be a family of r-graphs. Then

γ+(F) ∈ {0} ∪
[

1
r

, 1
]

.

In other words, every α ∈ [0, 1/r) is a γ+-jump. Proposition 1.4 describes
behavior similar to that of the classical Turán density. Every r-graph F that
is contained in some blow-up of an r-edge can be shown to be “degenerate”,
having co+ex(n, F ) = o(n), so γ+(F ) = 0. On the other hand, if F is
not contained in any blow-up of an r-edge, then γ+(F ) ⩾ 1

r , since the
balanced n-vertex blow-up of an r-edge has minimum positive co-degree
approximately n

r . An r-graph F is k-partite if there is a partition of V (F )
into k classes such that each edge intersects each part at most once.

Although Proposition 1.4 suggests that γ and γ+ exhibit fundamentally
different behaviors, it is not clear what behavior to expect from γ+. Cur-
rently, we know the exact value γ+(F ) only for very few 3-graphs F . Half-
pap, Lemons, and Palmer [27] determined the values of γ+(F ) for many
small 3-graphs F , and bounded γ+(F ) in some other instances. Various au-
thors have reported improvements on several of these initial bounds, with
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the current best known values summarized in Table 1.1. For comparison,
the best-known bounds on π and γ for these 3-graphs are also provided.
The graphs in Table 1.1 are either defined in Table 2.1 or by their edge sets
as follows:

K3−
4 = {123, 124, 134}, F5 = {123, 124, 345},

Cℓ = {123, 234, 345, . . . , (ℓ − 2)(ℓ − 1)ℓ, (ℓ − 1)ℓ1, ℓ12},

C−
ℓ = Cℓ − {ℓ12}, F = {123, 345, 156, 246, 147, 257, 367}.

See [5, 27] for more details about 3-graphs in Table 1.1. Note that the 3-
graph denoted here as K3−

4 is often called K−
4 in the literature; we adopt

the notation K3−
4 to distinguish this 3-graph from the 2-graph obtained by

deleting an edge from K4, which we denote by K−
4 .

F ⩽ π(F ) π(F ) ⩽ ⩽ γ(F ) γ(F ) ⩽ ⩽ γ+(F ) γ+(F ) ⩽
K3−

4 2/7 [23] 0.28689 [45] 1/4 [36] 1/4 [20] 1/3 [27] 1/3 [27]
F5 2/9 [10] 2/9 [22] 0 [5] 0 [5] 1/3 [27] 1/3 [27]
F3,2 4/9 [34] 4/9 [25] 1/3 [19] 1/3 [19] 1/2 [27] 1/2 [27]
F 3/4 [43] 3/4 [14] 1/2 [33] 1/2 [33] 2/3 [27] 2/3 [27]
K3

4 5/9 [44] 0.5615 [2] 1/2 [13] 0.529 [5] 1/2 [27] 0.543 [46]
F3,3 3/4 [34] 3/4 [34] 1/2 [5] 0.604 [5] 3/5 [27] 0.616
C5 2

√
3 − 3 [34] 0.46829 [45] 1/3 [5] 0.3993 [5] 1/2 [27] 1/2 [47]

C7 2
√

3 − 3 [34] 2
√

3 − 3 [8] 1/3 [5] 0.371 1/2 [26] 1/2 [26]
C−

5 1/4 [34] 1/4 [31] 0 [5] 0 [37] 1/3 [27] 1/3 [47]
J4 1/2 [11] 0.50409 [45] 1/4 [5] 0.473 [5] 4/7 [27] 4/7
F4,2 4/9 0.4933328 1/3 0.4185 3/5 3/5

Table 1.1. Best-known density bounds for π, γ, and γ+.

Kamčev, Letzter, and Pokrovskiy [29] proved that the Turán density
of longer tight cycles Cℓ is 2

√
3 − 3, when ℓ is not multiple of three and

sufficiently large (when ℓ is divisible by three, then Cℓ is 3-partite, hence
its Turán density is 0). Bodnár, León, Liu and Pikhurko [8] showed it holds
already for ℓ ⩾ 7. Similarly, Balogh and Luo [7] proved for ℓ sufficiently
large and not divisible by 3 that the Turán density of C−

ℓ is 1/4. Recently,
this was proved for every ℓ ⩾ 5 independently by Lidický, Mattes, and
Pfender [31] and Bodnár, León, Liu, and Pikhurko [9]. That the co-degree
density is 1/3 for tight cycles of length at least 10 and not divisible by 3
was proved by Piga, Sanhueza-Matamala, and Schacht [38] and Ma [32].
On the other hand, the fact that the co-degree density of C−

ℓ is 0 is due to
Piga, Sales, and Schülke [39].
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Given r ⩾ 2, we call α ∈ [0, 1] an achievable value (for γ+) if there exists
a family F of r-graphs such that γ+(F) = α. Before our article, the only
known achievable values of γ+ for r = 3 were 0, 1/3, 1/2, and 2/3.

Our goal is to understand the positive co-degree density by demonstrat-
ing additional γ+-jumps for every r, as well as by expanding the known
list of achievable values of γ+ for r = 3. Our paper is organized as fol-
lows. In Section 2, we summarize our main results. In Section 3, we state
some additional definitions and lemmas which will be used in our proofs.
In Section 4, we demonstrate further γ+-jumps for every r, and for r = 3
establish an infinite set of achievable values for γ+. In Section 2.4, we use
flag algebras to exactly determine γ+ for two additional 3-graphs, hence
adding two values to the list of achievable values of γ+. Finally, in Sec-
tion 6, we have some concluding remarks and list a wide variety of open
problems in the area.

2. New results

Our first main theorem extends the range of jumps described in Propo-
sition 1.4. We will need the following definition. An r-triangle, denoted by
T r, is an r-graph with r + 1 vertices and three r-edges. Notice that T r

can be obtained from the 2-graph triangle T 2 by adding r − 2 vertices and
including them to each of the three edges. Such hypergraphs are sometimes
called daisies in the literature. The T 2 part of a T r is called the base of
the T r. Notice that T 3 is the same as K3−

4 .

Theorem 2.1. — Let F be a family of r-graphs for r ⩾ 2. Then

γ+(F) ∈
{

0,
1
r

}
∪
[

2
2r − 1 , 1

]
.

Thus, every α ∈ [0, 2
2r−1 ) is a γ+-jump.

Moreover, γ+(F) = 0 if and only if some member of F is r-partite, and
γ+(F) = 1

r if and only if no member of F is r-partite, but some member
of F is contained in a blow-up of some T r.

For r = 3, we also provide an infinite set of achievable values for γ+, based
on forbidden families involving the following 3-graphs. For k ⩾ 3, let Jk be
the (k + 1)-vertex 3-graph, on vertex set [k + 1], with 3-edges of the form
1ij for every i, j ∈ {2, . . . , k + 1}. Let K3

4 denote the complete 4-vertex 3-
graph, and let F3,2 denote the 5-vertex 3-graph, on vertex set {1, 2, 3, 4, 5},
with edge set {123, 124, 125, 345}. See Table 2.1 for an illustration of these
and other relevant 3-graphs.
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Figure 2.1. Small 3-uniform hypergraphs.

Theorem 2.2. — For every k ⩾ 4,

γ+({K3
4 , F3,2, Jk}) = k − 2

2k − 3 .

We also investigate whether the densities exhibited by Theorem 2.2 can
be achieved by forbidding just a single 3-graph. In the case k = 4, we
have γ+({K3

4 , F3,2, J4}) = 2
5 . Let F1 be a 7-vertex 3-graph with edges

{125, 135, 235, 126, 146, 246, 347}, see Figure 4.2. We show that F1 has pos-
itive co-degree density 2

5 .

Theorem 2.3. — γ+(F1) = 2
5 .
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Finally, we utilize flag algebras to determine the positive co-degree den-
sities of two graphs, which exhibit new achievable values of γ+ larger than
1
2 . We determine γ+(J4), and show that the (asymptotic) extremal con-
struction is the blow-up of the complement of the Fano plane. Notice that
J4 is a 3-daisy; see [16] for recent progress on Turán densities of r-daisies.

Theorem 2.4. — γ+(J4) = 4
7 .

We introduce another 3-graph, which will have a distinct new density. Let
F4,2 be the 6-vertex 3-graph with edges {123, 124, 134, 156, 256, 356, 456},
depicted in Table 2.1. Note that in F4,2 the common neighborhood of 5 and
6 is {1, 2, 3, 4}, and {1, 2, 3, 4} spans a K3−

4 . We determine γ+(F4,2), and
show that its (asymptotic) extremal construction is the balanced blow-up
of K3

5 .

Theorem 2.5. — γ+(F4,2) = 3
5 .

We also include some non-tight results obtained using flag algebras.

Theorem 2.6. — The following bounds hold.

π(F4,2) ⩽ 0.4933328, γ(F4,2) ⩽ 0.4185, γ+(F3,3) ⩽ 0.616.

The lower bounds in Table 1.1 for π(F4,2) and γ(F4,2) come from the
lower bound constructions for F3,2.

3. Preliminaries

We begin by stating some results related to supersaturation and a hy-
pergraph removal lemma. The hypergraph removal lemma states that an
r-graph containing only few copies of some subhypergraph F can be made
F -free by the deletion of only few r-edges. For a discussion of removal
lemmas, including the following formulation, see [12].

Lemma 3.1. — Fix α > 0 and let F be an r-graph. There exists δ > 0
such that if H is an n-vertex r-graph containing at most δn|V (F )| copies of
F , then there exists E′ ⊂ E(H) such that |E′| ⩽ αnr and H −E′ is F -free.

Although an r-graph with o(n|V (F )|) copies of F can be made F -free by
deleting o(nr) r-edges, it is not obvious that the deletion would change the
minimum positive co-degree by only o(n). The following “clean-up” lemma
due to Halfpap, Lemons, and Palmer [27] allows us to apply the hypergraph
removal lemma to minimum positive co-degree problems. Roughly, this
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lemma guarantees that any positive co-degree drop arising from the deletion
of a small set of r-edges can be mitigated by the deletion of another set of
r-edges.

Lemma 3.2 (Halfpap–Lemons–Palmer [27]). — Let H be an n-vertex
r-graph and fix 0 < ε < 1 small enough that (r + 1)!ε1/2r−1

nr < |E(H)|.
Let H1 be a subhypergraph of H obtained by the deletion of at most εnr

r-edges. Then H1 has a subhypergraph H2 with δ+
r−1(H2) ⩾ δ+

r−1(H) −
2rr!ε1/2r−1

n.

In practice it is not difficult to fulfill the condition in Lemma 3.2 that
(r+1)!ε1/2r−1

nr < |E(H)|, since δ+
r−1(H) can be used to give a lower bound

on |E(H)|.

Lemma 3.3 (Halfpap–Lemons–Palmer [27]). — Fix c > 0 and suppose
H is an r-graph with δ+

r−1(H) ⩾ cn. Then, for n large enough, |E(H)| ⩾
1
2

cr

r! nr.

Thus, for an n-vertex r-graph H with n sufficiently large and δ+
r−1(H) ⩾

cn, we can choose ε in Lemma 3.2 as a function of c and r alone.
Lemmas 3.1 and 3.2 can be used to prove supersaturation and related

properties for minimum positive co-degree problems. In particular, we have
the following basic formulation.

Theorem 3.4 (Halfpap–Lemons–Palmer [27]). — Fix ε > 0 and let F

be an r-graph. Then there exists δ > 0 such that, if H is an n-vertex
r-graph with

δ+
r−1(H) > co+ex(n, F ) + εn,

then H contains at least δn|V (F )| copies of F .

By a standard argument (see, e.g., [30]), if δ > 0 and t ∈ N are fixed and
n is sufficiently large, then every n-vertex r-graph H containing δn|V (F )|

copies of F must contain F [t]. Thus, as an immediate consequence of The-
orem 3.4, we have blow-up invariance for co+ex(n, F ).

Corollary 3.5 (Halfpap–Lemons–Palmer [27]). — Let F be an
r-graph and t a positive integer. Then

co+ex(n, F ) ⩽ co+ex(n, F [t]) ⩽ co+ex(n, F ) + o(n).

We remark that Corollary 3.5 is useful because it implies that if H and
F are r-graphs such that F is contained in H[t] for some t, then γ+(F ) ⩽
γ+(H). For example, when paired with the facts that a single 3-edge e

has γ+(e) = 0 and γ+(C5) = 1
2 , and with an appropriate lower bound
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construction, Corollary 3.5 implies that γ+(Cℓ) = 0 if ℓ ≡ 0 (mod 3) and
γ+(Cℓ) = 1

2 if ℓ ̸≡ 0 (mod 3) and Cℓ is contained in a blow-up of C5. In
fact, this resolves the positive co-degree density of every tight cycle except
for C4 = K3

4 and C7. Halfpap [26] proved γ+(C7) = 1/2.
In Section 4, we will apply essentially the same idea, finding one con-

struction whose blow-up contains another and then relating their positive
co-degree densities. However, for our purposes, a somewhat different for-
mulation from the above statements will be desirable. The proof ideas for
Theorem 3.4 and Corollary 3.5 are used to derive the following lemma.

Lemma 3.6. — Let F be a fixed r-graph on f vertices and a finite family
of r-graphs F = {F1, F2, . . . , Fk} be such that Fi[f ] contains F for every
i ∈ [k]. For every d ∈ [0, 1), if γ+(F ) > d, then for some β > 0 and n

sufficiently large there exists an n-vertex, {F} ∪ F-free r-graph H with
δ+

r−1(H) > (d + β) n.

Proof. — Given d as stated, choose β > 0 so that γ+(F ) ⩾ d + 3β, and
α > 0 such that 2rr!α1/2r−1

< β and (r+1)!α1/2r−1
nr < 1

2
(2β)r

r! nr. For each
i ∈ [k], take δi > 0 as guaranteed by Lemma 3.1 such that any hypergraph
H containing at most δin

|V (Fi)| copies of Fi can be made Fi-free by the
deletion of at most α

k nr r-edges. Choose N ∈ N sufficiently large such that
for all n ⩾ N , we have:

• co+ex(n, F ) ⩾ (d + 2β)n;
• for each i ∈ [k], if H is an n-vertex graph containing δin

|V (Fi)|

copies of Fi, then H contains Fi[f ].
Now fix n ⩾ N and let H be an n-vertex r-graph with δ+

r−1(H) =
co+ex(n, F ). Then H contains fewer than δin

|V (Fi)| copies of Fi for every
i ∈ [k], and thus can be made F-free by deletion of at most α|E(H)| edges
by repeated application of Lemma 3.1. Since we have

(r + 1)!α1/2r−1
nr <

1
2

(2β)r

r! nr ⩽ |E(H)|

by Lemma 3.3 and the definition of α, we can now apply Lemma 3.2 to
delete an additional set of r-edges, resulting in an {F} ∪ F-free, n-vertex
r-graph H ′ with

δ+
r−1(H ′) ⩾ δ+

r−1(H) − 2rr!α1/2r−1
n > δ+

r−1(H) − βn ⩾ (d + β)n. □

Lemma 3.6 is an important tool in finding positive co-degree densities as
it essentially allows us to expand our list of forbidden configurations.

We conclude this section with some relevant definitions and notation.
We often consider 4-vertex cliques with one edge removed; these may be
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2-uniform or 3-uniform. To avoid ambiguity, we denote by K−
4 the 2-graph

on 4 vertices and 5 edges, and by K3−
4 the 3-graph on 4 vertices and three

3-edges.
Some of the hypergraphs we consider can be naturally described as aris-

ing from lower-uniformity hypergraphs. We define the following operation,
which increases the uniformity of a hypergraph by one. Given an r-graph
H, the suspension Ĥ is the (r+1)-graph with vertex set consisting of V (H)
and one new vertex v, and (r + 1)-edges

E(Ĥ) = {e ∪ {v} : e ∈ E(H)}.

We call V (H) the r-graph vertices and v the spike vertex. Notice that
the (r + 1)-triangle T r+1 is a suspension of the r-triangle T r.

Let H be an r-graph. For a subset X = {x1, . . . , xr−1} of size r − 1 of
vertices of H, denote by N(X) the set of all vertices v such that X ∪ {v} ∈
E(H). We use d(X) := |N(X)|, which is the co-degree of X. To simplify
notation we use N(x1, . . . , xr−1) := N(X) and d(x1, . . . , xr−1) := d(X).
We call N(X) the neighborhood of X.

In a 3-graph H, the link graph L(v) of a vertex v ∈ V (H) is the auxiliary
2-graph on V (H) − {v} where xy is an edge if and only if vxy is a 3-edge
of H.

For 3-graphs G and H the density of G in H, denoted by d(G, H), is
the number of subgraphs of H isomorphic to G divided by

(|V (H)|
|V (G)|

)
. Notice

that the density is always in [0, 1].

4. Jumps and positive co-degree densities below 1
2

Proof of Theorem 2.1. — Proposition 1.4 implies that γ+(F) ∈ {0} ∪
[ 1

r , 1] for any family F of r-graphs, so it is sufficient to show that there is
no family F with γ+(F) ∈ ( 1

r , 2
2r−1 ).

First assume that forbidding F implies that some blow-up T r[t] of T r

is also forbidden (recall, T r denotes the triangle with three edges on r + 1
vertices). Corollary 3.5 gives γ+(T r[t]) = γ+(T r). As

γ+(F) ⩽ γ+(T r[t]) = γ+(T r),

it is sufficient to show that γ+(T r) ⩽ 1
r .

Suppose that H is an n-vertex r-graph with δ+
r−1(H) > n

r , and let
v1v2 . . . vr be an r-edge of H. Consider the r vertex sets, each of size r − 1,
contained in the r-edge v1v2 . . . vr. Each of them is a set with positive co-
degree, hence each has neighborhood of size greater than n

r . Since there
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12 J. Balogh, A. Halfpap, B. Lidický & C. Palmer

are r such sets, there must be a vertex, say vr+1, which is contained in at
least two such neighborhoods. Relabeling if needed, we may assume that

vr+1 ∈ N(v1, . . . , vr−2, vr−1) ∩ N(v1, . . . , vr−2, vr).

The three r-edges v1v2 . . . vr−2vr−1vr, v1v2 . . . vr−2vr−1vr+1, and
v1v2 . . . vr−2vrvr+1 form T r. Thus, 1

r ⩾ γ+ (T r) ⩾ γ+ (F).
Now assume that forbidding F does not exclude any blow-up of T r. Con-

sider the following n-vertex blow-up of T r. The three vertices corresponding
to the base triangle T 2 are blown up to classes of size n

2r−1 . All other ver-
tices are blown up to classes of size 2n

2r−1 . In total, we have 3 classes of
size n

2r−1 and r − 2 classes of size 2n
2r−1 , for a total of n vertices, as de-

sired. A set of r − 1 vertices whose intersection with any class has at least
two vertices will have co-degree 0. A set of r − 1 vertices which intersects
all three classes of size n

2r−1 will also have co-degree 0. All other sets of
size r − 1 have neighborhood of size exactly 2n

2r−1 , corresponding either to
two classes of size n

2r−1 or one class of size 2n
2r−1 . This construction implies

γ+(F) ⩾ 2
2r−1 .

Now, we can characterize families of r-graphs F with γ+(F) ∈ {0, 1
r }.

Corollary 3.5 establishes that if F ∈ F is r-partite, then γ+(F ) = 0, so
γ+(F) = 0 as well. If no F ∈ F is r-partite, then any blow-up of an r-edge
is F-free, so γ+(F) ⩾ 1

r . Thus, γ+(F) = 0 if and only if some F ∈ F is
r-partite. Similarly, if an F ∈ F is contained in a blow-up of T r, then

γ+(F) ⩽ γ+(F ) ⩽ γ+(T r) ⩽ 1
r

.

Thus, if some F ∈ F is contained in some T r blow-up but no member of
F is r-partite, then we have γ+(F ) = 1

r . On the other hand, if no member
of F is contained in any blow-up of T r, then the above-described blow-up
of T r establishes that γ+(F) ⩾ 2

2r−1 . □

Remark 4.1. — The characterization in Theorem 2.1 implies the positive
co-degree densities for a variety of natural 3-graphs. It is straightforward
to verify that C−

ℓ (the ℓ-vertex (tight) cycle with one edge deleted) is
contained in a sufficiently large blow-up of K3−

4 . Moreover, C−
ℓ is 3-partite

if and only if ℓ ≡ 0 (mod 3). Thus, γ+(C−
ℓ ) = 0 when ℓ ≡ 0 (mod 3),

and γ+(C−
ℓ ) = 1

3 otherwise. This generalizes the result of Wu [47] that
γ+(C−

5 ) = 1
3 .

The next natural question is whether Theorem 2.1 is best possible. That
is, does there exist some family F of r-graphs with γ+(F) = 2

2r−1 ? We
answer this question in the affirmative when r = 3. Furthermore, we show
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POSITIVE CO-DEGREE DENSITIES AND JUMPS 13

that an infinite number of densities in the interval [ 2
5 , 1

2 ] are achievable
when r = 3. We begin by exhibiting a family F with γ+(F) = 2

5 . We first
define F ++1

3,2 and F ++2
3,2 , two superhypergraphs of F3,2. Each is created by

adding two edges to F3,2. Let F3,2 have vertex set {a, b, c, d, e} and edge
set {abc, abd, abe, cde}. Then we create F ++1

3,2 by adding acd and ace, and
we create F ++2

3,2 by adding acd and bce, see Figure 4.1.

a b

d c e

a b

d c e

a b

d c e

Figure 4.1. F3,2 and two superhypergraphs, F ++1
3,2 and F ++2

3,2 .

Proposition 4.2. — For F = {K3
4 , F ++1

3,2 , F ++2
3,2 , J4} and

F ′ = {K3
4 , F3,2, J4} we have

γ+(F) = γ+(F ′) = 2
5 .

Proof. — Since F3,2 is a subgraph of both F ++1
3,2 , F ++2

3,2 , hence γ+(F) ⩾
γ+(F ′). As noted in the proof of Theorem 2.1, an appropriately balanced
n-vertex blow-up of T 3 = K3−

4 has minimum positive co-degree 2n
5 + O(1).

Any blow-up of K3−
4 is J4-free and F3,2-free since K3−

4 is 4-partite and
neither of F3,2 and J4 are. Since blow-ups K3−

4 are also K3
4 -free, we have

2
5 ⩽ γ+(F ′) ⩽ γ+(F).

Next we show γ+(F) ⩽ 2
5 , which completes the proof. Fix an ε > 0

and suppose that H is an n-vertex 3-graph with δ+
2 (H) ⩾

( 2
5 + ε

)
n for

sufficiently large n. Since γ+(K3−
4 ) = 1

3 , H contains K3−
4 , say with vertex

set {a, b, c, d} and edge set {abc, abd, acd}.
Consider the following five positive co-degree pairs: ab, ac, ad, bc, and bd.

Since δ+
2 (H) ⩾

( 2
5 + ε

)
n, there exists some vertex e that is in the neigh-

borhood of at least three of these pairs. Note that c and d are symmetric;
up to this symmetry, we have six cases based on which three of these five
pairs form an edge with e.

(1) If abe, ace, ade ∈ E(H) then abc, abd, acd, abe, ace, ade form a J4.
(2) If abe, ace, bce ∈ E(H) then abc, abe, ace, bce form a K3

4 .
(3) If abe, ace, bde ∈ E(H) then acb, acd, ace, bde form an F3,2. More-

over, abd and abe are 3-edges, so {a, b, c, d, e} spans an F ++1
3,2 .
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14 J. Balogh, A. Halfpap, B. Lidický & C. Palmer

(4) If ace, ade, bce ∈ E(H) then adb, adc, ade, bce form an F3,2. More-
over, abc and ace are 3-edges, so {a, b, c, d, e} spans an F ++1

3,2 .
(5) If abe, bce, bde ∈ E(H) then bea, bec, bed, acd form an F3,2. More-

over, bac and bad are 3-edges, so {a, b, c, d, e} spans an F ++1
3,2 .

(6) If ace, bce, bde ∈ E(H) then acb, acd, ace, bde form an F3,2. More-
over, abd and cbe are 3-edges, so {a, b, c, d, e} spans an F ++2

3,2 .
This implies γ+(F) ⩽ 2

5 . □

We use Proposition 4.2 as the base of an inductive argument, showing
that an infinite number of positive co-degree densities in [ 2

5 , 1
2 ] are achiev-

able by families of 3-graphs.
Proof of Theorem 2.2. — For a lower bound, observe that any blow-up

of Jk−1 is {K3
4 , F3,2, Jk}-free, and that an appropriately balanced n-vertex

blow-up of Jk−1 (with class sizes k−2
2k−3 n, 1

2k−3 n, . . . , 1
2k−3 n) has minimum

positive co-degree
(

k−2
2k−3

)
n + O(1). Thus, γ+({K3

4 , F3,2, Jk}) ⩾ k−2
2k−3 for

all k ⩾ 4.
To show that this lower bound is best-possible, we use induction on k.

Proposition 4.2 yields the statement for k = 4. We assume the statement
holds for k ⩾ 4, and prove it for k+1. Suppose that H is an n-vertex 3-graph
with minimum positive co-degree δ+

2 (H) > k−1
2k−1 n where is n sufficiently

large. If H contains one of K3
4 or F3,2, then we are done, so suppose not.

Then by the inductive hypothesis, γ+({K3
4 , F3,2, Jk}) = k−2

2k−3 < k−1
2k−1 , so

H contains a Jk, say J (here we use that n is large enough). Let V (J) =
{v1, . . . , vk+1}, where v1 is the universal vertex of J (i.e., E(J) = {v1vivj :
2 ⩽ i < j ⩽ k + 1}). Define

S = {(v1, vi) : 2 ⩽ i ⩽ k + 1} ∪ {(vi, vi+1) : 2 ⩽ i ⩽ k}.

Observe that |S| = 2k − 1 and every vertex pair in S has positive co-
degree in H. Since δ+

2 (H) > k−1
2k−1 n, there exists a vertex u ∈ V (H) which is

in the neighborhood of at least k pairs (vi, vj) ∈ S. Note that u may be an
element of V (J). However, if (vi, vj) ∈ S is a pair such that u ∈ N(vi, vj),
then u ̸∈ {vi, vj}.

If u ∈ N(v1, vi) for every i ∈ {2, . . . , k+1} then u ̸∈ V (J), and V (J)∪{u}
spans Jk+1, with universal vertex v1.

Hence, we may assume that there is some i ⩾ 2 for which u ∈ N(vi, vi+1).
Our goal in this case is to find F3,2. Observe that there must be a j

such that u ∈ N(v1, vj). If there is such a j ̸∈ {i, i + 1}, then u ̸∈
{v1, vi, vi+1, vj}, and {v1, vi, vi+1, vj , u} will span an F3,2, using 3-edges
v1vjvi, v1vjvi+1, v1vju, vivi+1u. Hence, we may assume that every such j is
in {i, i + 1}. In particular, u is in at most two neighborhoods of the form
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POSITIVE CO-DEGREE DENSITIES AND JUMPS 15

N(v1, vj). Since k ⩾ 4 and u is in the neighborhood of at least k pairs
from S, we have u ∈ N(vℓ, vℓ+1) for some ℓ ̸= i. Now, if u ∈ N(v1, vi)
and u ∈ N(v1, vi+1), then {v1, vi, vi+1, u} spans a K3

4 . If not, then without
loss of generality u ∈ N(v1, vi) and u is in the neighborhood of the three
pairs (vi, vi+1), (vℓ, vℓ+1), (vm, vm+1) for some ℓ, m. One of these pairs, say
(vℓ, vℓ+1), must be disjoint from (v1, vi), in which case we observe that
{v1, vi, vℓ, vℓ+1, u} will span an F3,2. □

Although infinitely many positive co-degree densities in [ 2
5 , 1

2 ] can be
achieved by forbidden families of 3-graphs, it remains unclear whether all
of these densities can be achieved by forbidding a single 3-graph. Using
Proposition 4.2, we now show that 2

5 is indeed achievable by a single 3-
graph. We begin by defining two new 3-graphs F1 and F2 as follows.

V (F1) = {a, b, c, d, e, f, g}, E(F1) = {abe, ace, bce, abf, adf, bdf, cdg},

V (F2) = {a, b, c, d, e, g}, E(F2) = {abe, ace, bce, ade, bde, cdg}.

We depict F1 and F2 in Figure 4.2. We remark that each of F1, F2 can
be viewed as a partial identification of two K3−

4 copies, along with an extra
3-edge (using g) which ensures that c and d have positive co-degree.

c
a

b
d

e

g

b
c

a
d

e

c
a

b

d

e f

g

b
c

a d

e f

F2F1

Figure 4.2. F1 and F2.

Note that in both F1 and F2, the vertex g has very little structural
interaction with the other vertices. Suppose H is isomorphic to the sub-
hypergraph of F1 (resp. F2) induced on V (F1) \ {g} (resp. V (F2) \ {g}).
Then H is guaranteed to extend to F1 (resp. F2) if d(c, d) > 4. We will be
working in 3-graphs with minimum positive co-degree much larger than 4,
so to find copies of F1 or F2, it will suffice to find F1 \ {g} or F2 \ {g} and
to demonstrate that the pair {c, d} has positive co-degree.
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Note that F2 is 5-partite, so γ+(F2) ⩾ 1
2 . However, F1 is 4-partite, and

is contained in a blow-up of J4, but it is not contained in a blow-up of
J3 = K3−

4 . Thus, γ+(F1) ⩾ 2
5 . We now prove that γ+(F1) = 2

5 .
Proof of Theorem 2.3. — For a contradiction, assume that there exists

ε > 0 such that γ+(F1) ⩾ 2
5 + 3ε. We begin with a claim that will allow us

to expand our forbidden family.

Claim 4.3. — The 3-blow-up of each member of the following family

F = {K3
4 , J4, F ++1

3,2 , F2}

contains F1.

Proof. — Observe that F2 can be obtained from F1 by identifying e and
f . Using the notation

V (K3
4 ) = {1, 2, 3, 4}, E(K3

4 ) = {123, 124, 134, 234},

V (J4) = {1, 2, 3, 4, 5}, E(J4) = {123, 124, 125, 134, 135, 145},

V (F ++1
3,2 ) = {1, 2, 3, 4, 5}, E(F ++1

3,2 ) = {123, 124, 125, 345, 134, 135}

the following maps prove the claim for K3
4 , J4, and F ++1

3,2 :
• f1 : F1 → K3

4 : a → 1, b → 2, c → 3, d → 4, e → 4, f → 3, g → 1.
• f2 : F1 → J4 : a → 2, b → 3, c → 4, d → 5, e → 1, f → 1, g → 1.
• f3 : F1 → F ++1

3,2 : a → 2, b → 3, c → 4, d → 5, e → 1, f → 1,

g → 3. □

Thus, by Lemma 3.6, for n large enough there exists an n-vertex 3-graph
H with δ+

2 (H) ⩾
( 2

5 + ε
)

n which is {F1} ∪ F-free. By Proposition 4.2,

γ+({K3
4 , J4, F ++1

3,2 , F ++2
3,2 }) = 2

5 ,

so H contains F ++2
3,2 , which we shall call F . Put

V (F ) = {a, b, c, d, e}, with E(F ) = {abc, abd, abe, cde, acd, bce}.

Observe that every pair of vertices in V (F ) has positive co-degree. Since
δ+

2 (H) ⩾
( 2

5 + ε
)

n, there exists some vertex f that is in the neighborhood
of at least five pairs from V (F ). Let Gf be the link graph of vertex f induced
on vertex set V (F ) (i.e. Gf = L(f)[V (F )]). In particular, |E(Gf )| ⩾ 5.

Claim 4.4. — The following statements hold:
(i) For every xyz ∈ E(H), at most two of xy, xz, yz are in E(Gf ).
(ii) There is no isolated vertex in Gf .
(iii) At most one of ad, cd is in E(Gf ) and at most one of be, ce is in

E(Gf ).
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(iv) At most one of cd, de is in E(Gf ) and at most one of ce, de is in
E(Gf ).

(v) At most one of ab, ac is in E(Gf ) and at most one of ab, bc is in
E(Gf ).

(vi) At most one of ab, ad is in E(Gf ) and at most one of ab, be is in
E(Gf ).

(vii) At most one of ac, ad is in E(Gf ) and at most one of bc, be is in
E(Gf ).

(viii) Gf is triangle-free.

Proof. — To prove each statement, we shall assume that the statement
does not hold and use this assumption to find some forbidden structure
in H. Notice that the two parts in each of the statements (iii)–(vii) are
symmetric so it is sufficient to prove only the first part of each of those
claims. Here the symmetry follows from the fact that a → b, b → a, c →
c, d → e, e → d is an automorphism of F .

For (i), observe that if xyz ∈ E(H) and xy, xz, yz ∈ E(Gf ), then
{x, y, z, f} spans a K3

4 in H.
For (ii), assume that Gf contains a vertex of degree 0. Then the other

four vertices in V (F ) span (at least) five edges of Gf , so Gf contains a K−
4 .

As illustrated in Figure 4.3, a K−
4 in Gf implies that H contains F2 if the

appropriate pair of vertices (x and y, in the figure) has positive co-degree.
Since all pairs of vertices in F have positive co-degree, a K−

4 in Gf indeed
implies that H contains F2.

x z

w y

Gf

x
z

w
y

f

w
x

z
y

f

H

Figure 4.3. K−
4 in Gf and the resulting structure in H.

For (iii), observe that if ad, cd ∈ E(Gf ), then {a, c, d, f} spans K3−
4

with spike vertex d, and {a, b, c, e} spans K3−
4 with spike vertex b, so

{a, b, c, d, e, f} spans F1 (since d(e, f) > 0 by (ii)).
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For (iv), if cd, de ∈ E(Gf ), then {c, d, e, f} spans K3−
4 with spike vertex

d, and {a, b, c, e} spans K3−
4 with spike vertex b, so {a, b, c, d, e, f} spans

F1 (since d(a, f) > 0 by (ii)).
For (v), if ab, ac ∈ E(Gf ), then {a, b, c, d} and {a, b, c, f} span copies

of K3−
4 with spike vertex a, so {a, b, c, d, f} spans F2 (since d(d, f) > 0

by (ii)).
For (vi), if ab, ad ∈ E(Gf ), then {a, b, c, d} and {a, b, d, f} span copies

of K3−
4 with spike vertex a, so {a, b, c, d, f} spans F2 (since d(c, f) > 0

by (ii)).
For (vii), if ac, ad ∈ E(Gf ), then {a, b, c, d} and {a, c, d, f} span copies

of K3−
4 with spike vertex a, so {a, b, c, d, f} spans F2 (since d(b, f) > 0

by (ii)).
Finally, we show (viii). From (i), we know that {c, d, e} does not form a

triangle in Gf , and from (v) and (vi) it follows that ab is not contained in a
triangle in Gf . Thus, any triangle in Gf must include one edge spanned by
{c, d, e}, and two edges with one vertex in {a, b} and the other in {c, d, e}.
By (i), {a, c, d} does not span a triangle (nor does {b, c, e}). Up to symme-
try, there are two other potential triangles: {a, d, e}, and {a, c, e}. Observe
that if {a, d, e} spans a triangle in Gf , then {a, d, e, f} spans K3−

4 with spike
vertex f , and {a, b, c, e} spans K3−

4 with spike vertex b, so {a, b, c, d, e, f}
spans F1 (since d(c, d) > 0).

Next, suppose {a, c, e} spans a triangle in Gf . By (iii), (iv), (v), and
(vii), none of be, de, ab, ad are in E(Gf ). Thus, two of bc, bd, cd are in
E(Gf ). We shall show that this is impossible. Observe that if bc ∈ E(Gf ),
then {a, b, c, f} and {b, c, e, f} each spans a K3−

4 with spike vertex c, so
{a, b, c, e, f} spans F2 (since d(a, e) > 0). Moreover, if cd ∈ E(Gf ), then
{a, c, d, f} and {c, d, e, f} span K3−

4 with spike vertex c, so {a, c, d, e, f}
spans F2 (since d(a, e) > 0). Thus, Gf is triangle-free. □

With Claim 4.4 established, we are ready to determine the structure of
Gf . By (i), at most two out of five edges of Gf are spanned by {c, d, e},
so one of a, b has degree at least 2. Without loss of generality, d(a) ⩾ d(b)
and d(a) ⩾ 2.

Observation 4.5. — ab ̸∈ E(Gf ).

Proof. — Suppose to the contrary that ab ∈ E(Gf ). By (v) and (vi),
ac and ad are not in E(Gf ), so we must have ae ∈ E(Gf ). By (v) and
(vi), we also have bc, be ̸∈ E(Gf ). Since Gf has five edges, at least three
of bd, cd, ce, de are in E(Gf ). By (iv), at most one of ce, de is in E(Gf ),
so bd, cd ∈ E(Gf ). Also by (iv), if cd ∈ E(Gf ), then de ̸∈ E(Gf ), so ce ∈
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E(Gf ). Since ae ∈ E(Gf ), there exists a vertex x not in V (F ) that is a com-
mon neighbor of a and e. The set of edges {adb, dce, fab, fbd, fdc, fce, aex}
forms F1. See Figure 4.4 for an illustration of Gf , F , and F1. □

ba

c ed

ba

c ed

Gf and F

a

d

f

e

b c

x

f
a

d
e

b c

F1

Figure 4.4. The configuration when ab ∈ E(Gf ), and the resulting
copy of F1.

Since d(a) ⩾ 2, two of ac, ad, ae are in E(Gf ). By (vii), at most one
of ac, ad is in E(Gf ), so E(Gf ) contains ae and exactly one of ac, ad,
which also implies d(a) = 2. Suppose first that ad ∈ E(Gf ). By (iii),
cd ̸∈ E(Gf ), and by (viii), de ̸∈ E(Gf ). Now, since d(b) ⩽ d(a) = 2, we
must have ce ∈ E(Gf ), otherwise |E(Gf )| < 5. Now, by (iii), be ̸∈ E(Gf ),
so we must have bc, bd ∈ E(Gf ). Since ae ∈ E(Gf ), there exists a vertex
x not in V (F ) that is a common neighbor of a and e. The set of edges
{adb, bce, fad, fbd, fbc, fce, aex} forms F1. See Figure 4.5 for an illustration
of Gf , F , and F1.

Thus, we have ac, ae ∈ E(Gf ) and ad ̸∈ E(Gf ). By (viii), ce ̸∈ E(Gf ),
and by (iv), at most one of cd, de is in E(Gf ). Thus, d(b) = 2. By (vii),
at most one of bc, be is in E(Gf ), hence bd ∈ E(Gf ). Suppose for a con-
tradiction that be ∈ E(Gf ). Then by (viii), de ̸∈ E(Gf ). Since Gf has
at least 5 edges, dc ∈ E(Gf ). Since bd ∈ E(Gf ), there exists a vertex
x not in V (F ) that is a common neighbor of b and d. The set of edges
{abe, adc, fbe, fae, fac, fcd, bdx} forms F1. See Figure 4.6 for an illustra-
tion of Gf , F , and F1.

Thus, bc ∈ E(Gf ). By (viii), cd ̸∈ E(Gf ), so we must have de ∈ E(Gf ).
Hence E(Gf ) = {ae, ac, bc, bd, de}; see Figure 4.7 for an illustration.

Unlike in the previous cases, we cannot immediately find F1 (or any
other forbidden hypergraph) in Figure 4.7. However, we now have that the
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ba

c ed

ba

c ed

Gf and F

a

b

f

e

d c

x

f
a

b
e

d c

F1

Figure 4.5. The configuration when ad, ae ∈ E(Gf ), and the resulting
copy of F1.

ab

c de c

Gf and F

b
a

f

d

e c

x

f

F1

Figure 4.6. The configuration when be ∈ E(Gf ), and the resulting
copy of F1.

subhypergraph of H induced on {a, b, c, d, e, f} has edge set

{abc, abd, abe, adc, bce, cde, fac, fcb, fbd, fde, fea}.

We call this subhypergraph F ′, and we shall use F ′ to find some forbidden
hypergraph.

Observe first that each of the 15 pairs of vertices in F ′ have positive co-
degree. Thus, there exists some g ∈ V (H) that is in the neighborhood of
at least 15

( 2
5 + ε

)
> 6 pairs. Let Gg be the link graph of vertex g induced

on V (F ′) (i.e. Gg = L(g)[V (F ′)]). Again, we begin with some observations
on Gg.

Claim 4.6. — δ(Gg) ⩾ 1. Moreover, in Gg, N(f) = {c, d, e}.
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ba

c ed

ba

c ed

Figure 4.7. F and Gf when ac, ae ∈ E(Gf ).

Proof. — As in the proof of Claim 4.4, since all pairs from {a, b, c, d, e, f}
have positive co-degree, Gg cannot contain K−

4 .
If Gg has an isolated vertex v, then Gg −v has 7 edges on 5 vertices. The

graph Gg − v must contain a triangle and the remaining two vertices send
at least 3 edges to the triangle. Thus, one of these two vertices sends two
edges to the triangle; this forms a K−

4 in Gg − v. Therefore, every vertex
of Gg has positive degree.

Next, observe that the previous analysis of Gf in fact shows that if some
vertex v ∈ V (H) \ V (F ) is in 3-edges with at least 5 pairs V (F ), then the
link graph of v induced on V (F ) must be equal to Gf . In particular, this
implies that either Gg contains Gf or g is in 3-edges with at most 4 pairs
from V (F ). Observe that if Gg contains Gf , then {a, b, c, f} and {a, b, c, g}
span copies of K3−

4 with spike vertex c. This implies that {a, b, c, f, g} spans
F2, since we have argued that d(f, g) > 0. Thus, g is in 3-edges with at
most 4 pairs from V (F ), which implies that f has degree at least 3 in Gg,
since |E(Gg)| ⩾ 7.

Finally, to determine N(f) in Gg, we consider the interaction between
Gg and Gf . Suppose that x, y are neighbors of f in Gg such that xy ∈
E(Gf ). Then {x, y, f, g} forms K3−

4 with spike vertex f . We consider the
possible values of x, y; we know xy ∈ {ac, ae, bc, bd, de}. Since {a, b, c, d}
spans K3−

4 with spike vertex a, and we have established that g has positive
co-degree with every vertex in V (F ), we can find F1 in H on vertex set
{a, b, c, d, f, g} if xy ∈ {bc, bd}. Similarly, if xy ∈ {ac, ae}, then we can find
F1 on {a, b, c, e, f, g}. Thus, in Gg, either N(f) is an independent set or
N(f) contains precisely the edge de. Recall that |N(f)| ⩾ 3, so the first
outcome is impossible, as the independence number of Gf is 2. The second
outcome occurs only if N(f) = {c, d, e}. □
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With Claim 4.6 established, we conclude that |E(Gg)| = 7, with exactly
4 edges of Gg spanned by {a, b, c, d, e}. Given that cf, df, ef ∈ E(Gg), we
shall prove that this is not possible.

First, observe that none of cd, ce, de are in E(Gg). Indeed, if de ∈ E(Gg),
then {d, e, f, g} spans K3

4 (recall that de ∈ E(Gf )). If either cd or ce is in
E(Gg), then either {c, d, f, g} or {c, e, f, g} spans K3−

4 with spike vertex g;
if {c, d, f, g} spans K3−

4 , then {a, b, c, d, f, g} spans an F1, while if {c, e, f, g}
spans K3−

4 , then {a, b, c, e, f, g} spans an F1.
Note that parts (v), (vi), and (vii) of Claim 4.4 also apply to Gg since the

proofs of those statements only needed that there was no isolated vertex in
Gf and Claim 4.6 implies that Gg also has this property. Next, we prove
that ab ̸∈ E(Gg). Indeed, by (v) and (vi), if ab ∈ E(Gg), then ac, bc, ad, be

are not in E(Gg). Recall cd, ce, de are not in E(Gg). So if ab ∈ E(Gg),
then at most three edges of Gg are spanned by {a, b, c, d, e}. However, by
Claim 4.6, d(f) = 3 in Gg, so we have |E(Gg)| ⩽ 6, a contradiction. Thus,
ab ̸∈ E(Gg).

Finally, by (vii), at most two of ac, ad, bc, be are in E(Gg). So in order to
have |E(Gg)| = 7, both ae and bd must be in E(Gg). However, this results
in F1 on {a, b, d, e, g, f} with edges {age, afe, abc, gfe, gfd, gbd, bdf}.

ba

c ed

f

ba

c ed

f

a
g

f

b

e d

c

f
a

g b

e d

Figure 4.8. F ′ (edges involving f indicated by Gf in thick blue) and
a configuration in Gg (in dashed green) yielding F1.

We depict this F1 in Figure 4.8. □
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5. Positive co-degree densities from flag algebras

This section contains calculations using flag algebras, as introduced by
Razborov [41]. For an introduction to flag algebras and formal definitions,
see [20, 21, 41]. Computer code is available at https://lidicky.name/
pub/pco/.

We use flag algebras to prove Theorem 2.4 that γ+(J4) = 4/7, with
the asymptotically unique construction being the balanced blow-up of the
complement of the Fano plane. In Figure 5.1, we illustrate (a blow-up of)
the Fano plane, with a particular labeling of classes to which we will later
refer. We denote the complement of the Fano plane by F and the n-vertex,
balanced blow-up of the complement of the Fano plane by Fn.

X1 X2

X6

X7

X3

X4

X5

Figure 5.1. A blow-up of the Fano plane. In Fn, 3-edges span triples
of classes which do not span 3-edges in the blow-up of F.

Let F be the family of thirteen 3-graphs 6-vertex induced subgraphs of
Fn, depicted in Figure 5.2. We include labels to indicate which classes of Fn

each vertex belongs to, corresponding to the labeling in Figure 5.1. Note
that due to the symmetries of Fn, the indicated labelings are not the unique
ways a subgraph can be obtained.

Let F6 be the family of J4-free 6-vertex 3-graphs.
The following claim shows that if a J4-free n-vertex 3-graph G has mini-

mum positive co-degree at least 4
7 n then every 3-graph on six vertices with

positive density in G is in F .

Innov. Graph Theory 3, 2026, pp. 1–36

https://lidicky.name/pub/pco/
https://lidicky.name/pub/pco/


24 J. Balogh, A. Halfpap, B. Lidický & C. Palmer

F1

X1 X2 X3 X4 X4 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 4 6
2 5 6

3 4 6
3 5 6

F2

X1 X2 X3 X4 X4 X3
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 5
2 4 6
2 5 6

F3

X1 X2 X3 X4 X7 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 4 5
2 4 6

3 4 5
3 4 6

F4

X1 X2 X3 X4 X7 X6
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 6
2 4 5
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

F5

X1 X2 X3 X4 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 3 6

F6

X1 X2 X3 X7 X7 X7
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

F7

X1 X2 X3 X7 X7 X6
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

F8

X1 X2 X3 X7 X7 X1
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 6
2 4 6
2 5 6

3 4 6
3 5 6

F9

X1 X2 X3 X3 X1 X1
1 2 3
1 2 4
1 3 4

2 3 5
2 3 6
2 4 5
2 4 6

3 4 5
3 4 6

F10

X1 X2 X3 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 2 6

F11

X1 X2 X3 X3 X3 X2
1 2 3
1 2 4
1 2 5
1 3 6
1 4 6
1 5 6

F12

X1 X2 X3 X3 X2 X1
1 2 3
1 2 4
1 3 5
1 4 5

2 3 6
2 4 6

3 5 6
4 5 6

F13

X1 X1 X1 X1 X1 X2

Figure 5.2. The family F of thirteen 6-vertex 3-graphs.

Claim 5.1. — For every fixed δ > 0, there exists n0 such that for every
n ⩾ n0, if Gn is a J4-free n-vertex 3-graph with δ+

2 (Gn) ⩾ 4n
7 , then∑

H∈F6\F

d(H, Gn) ⩽ δ.

Proof. — The claim is proved by a standard application of flag algebras.
The notable part is encoding the condition δ+

2 (Gn) ⩾ 4n
7 into flag algebras
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by (5.1).

0 ⩽ 1 2
1 2 3 ×

(
7 1 2

1 2 3 − 4 1 2

)
.(5.1)

If two labeled vertices 1 and 2 have zero co-degree, the right-hand side
of (5.1) is zero because of the first term. If they have positive co-degree,
both terms in the product are non-negative.

The calculation is computer-assisted and too large to fit in this paper.
The details are available at https://lidicky.name/pub/pco/. □

In the proof of Theorem 2.4 we will use an induced removal lemma.

Theorem 5.2 (Induced Removal Lemma, [1, 42]). — Let r, C ∈ Z and
ε > 0 be fixed. For every family of r-graphs F on at most C vertices, there
exists δ > 0 such that every sufficiently large n, every r-graph on n vertices,
which contains at most δn|V (F )| induced copies of F for every F ∈ F , can
be made induced F-free by adding and/or deleting at most εnr hyperedges.

Claim 5.1 together with Theorem 5.2 forces 3-graphs with positive co-
degree at least 4

7 n to be highly structured, which is the core of the proof
of Theorem 2.4.

Proof of Theorem 2.4. — Recall that Fn is the blow-up of the comple-
ment of the Fano plane (see Figure 5.1) on vertices x1, . . . , x7, where each
vertex xi is blown-up to n

7 vertices into the set Xi. Let x ∈ Xi and y ∈ Xj

for some i, j ∈ [7]. If i = j then d(x, y) = 0. If i ̸= j then d(x, y) = 4
7 n. As

J4 ̸⊆ Fn, co+ex(n, J4) ⩾ 4
7 n + o(n), which implies γ+(J4) ⩾ 4/7.

Next, we show that γ+(J4) ⩽ 4/7. Fix β > 0 and ε > 0 small enough such
that 24ε1/4 < 1

12
( 4

7
)3 ≈ 0.015 and 48ε1/4 < β. We shall fix n sufficiently

large such that Claim 5.1 and Theorem 5.2 imply that every J4-free, n-
vertex 3-graph G has a subgraph G′ at edit distance at most εn3 from
G such that every 6-vertex induced subgraph of G′ is in F . We will also
take n sufficiently large that Lemma 3.3 may be applied with c = 4

7 and
any n-vertex 3-graph H with δ+

2 (H) ⩾
( 4

7 − 48ε1/4)n contains a K3
4 . This

last condition is possible because γ+(K3
4 ) ⩽ 0.543 (see Table 1.1), and

0.543 < 4
7 − 48ε1/4 by the choice of ε.

Fix an n-vertex J4-free 3-graph Gn with δ+
2 (Gn) ⩾ 4

7 n. Our goal is to
show that δ+

2 (Gn) <
( 4

7 + β
)

n, which will establish γ+(J4) ⩽ 4
7 . The proof

will also imply that in fact, the balanced blow-up of the complement of the
Fano plane is the asymptotically unique extremal construction.

By Lemma 3.3 and the choice of ε, Gn contains more than 24ε1/4n3

hyperedges. We can thus apply Lemma 3.2 to conclude that G′
n contains
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an n-vertex subgraph G′′
n with δ+

2 (G′′
n) ⩾

( 4
7 − 48ε1/4)n. Since G′

n may
not be a subgraph of Gn, we apply Lemma 3.2 to the subgraph of G′

n

obtained by deleting any 3-edges that were added to Gn by the application
of Theorem 5.2. Thus, G′′

n contains K3
4 , say on vertices v1, v2, v3, v4. Hence

{v1, v2, v3, v4} also spans K3
4 in G′

n. A search through F shows that there
are only two possible subgraphs on 5 vertices containing K3

4 , which we label
A and B below.

A :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 3 5

B :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 4 5

3 4 5

We now partition V (G′
n) into 7 sets X1, . . . , X7 as follows. Put vi ∈ Xi

for i ∈ [4]. For v ∈ V (G′
n)\{v1, v2, v3, v4}, define Gv := Gn[v1, v2, v3, v4, v].

If Gv is isomorphic to A then put v ∈ Xi where dGv
(v, vi) = 0 for some

vi. If Gv is isomorphic to B then put v ∈ X5 if v1v2v, v3v4v ̸∈ E(Gv) or
v ∈ X6 if v1v3v, v2v4v ̸∈ E(Gv) or v ∈ X7 if v1v4v, v2v3v ̸∈ E(Gv). This
addresses every vertex v, so we have a partition of V (G′

n) into X1, . . . , X7.
This labeling matches that in Figure 5.1.

Now, we show that G′
n is in fact a blow-up of the complement of the

Fano plane with classes X1, . . . , X7.

Claim 5.3. — G′
n satisfies the following conditions.

(i) For every i ∈ [7], no edge of G′
n intersects Xi in more than one

vertex.
(ii) If a ∈ Xi, b ∈ Xj , c ∈ Xk for classes Xi, Xj , Xk which correspond

to an edge of the Fano plane as labeled in Figure 5.1, then abc ̸∈
E(G′

n).
(iii) If a ∈ Xi, b ∈ Xj , c ∈ Xk for distinct classes Xi, Xj , Xk which do

not correspond to an edge of the Fano plane as labeled in Figure 5.1,
then abc ∈ E(G′

n).
In particular, G′

n is a blow-up of the complement of the Fano plane.

Proof. — We prove conditions (i), (ii), and (iii) one by one; in each case,
we will argue that if the condition is not satisfied, then G′

n must contain
some subgraph that is not in F . Throughout, refer to Figure 5.2 for the
labeled members of F . We implemented this check by a computer to reduce
the number of cases needed to be done by hand.

For (i), suppose for a contradiction that there exists an edge abc such
that a, b are in the same class of G′

n. First note that by the definition of
X1, . . . , X7, if abc either intersects

⋃4
i=1 Xi in at most two vertices or abc is
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contained in Xi for some i ∈ [4], then there exists {i, j, k} ⊂ [4] such that
two of N(xixj), N(xixk), and N(xjxk) contain a, b, c. Up to symmetry, we
may assume a, b, c ∈ N(x1x2) and N(x1x3). The set of edges of an induced
subgraph H of G′

n on {x1, x2, x3, a, b, c} includes

E = {x1x2x3, x1x2a, x1x2b, x1x2c, x1x3a, x1x3b, x1x3c, abc}.

Since no graph of F contains a subset of edges isomorphic to E, we have
H ̸∈ F , a contradiction. We use an analogous claim repeatedly. We use
computer for verification as well as arguments by hand.

Thus, if edge abc exists, we must have a, b ∈ Xi and c ∈ Xj for some i ̸= j

with i, j ∈ [4]. Note that at most one of a, b, c is in {x1, x2, x3, x4}, since by
the definition of the classes, no edge containing xi and xj for {i, j} ∈ [4]
intersects Xi or Xj . We have (up to symmetry of the classes) two cases.

Case 1: a, b ∈ X3, c ∈ X4, and x3 ̸∈ {a, b}. — Put H = G′
n[x1, x2, x3,

a, b, c]. The set of edges of H includes

E = {x1x2x3, x1x2a, x1x2b, x1x2c, x1x3c, abc}

and avoids edges N = {x1x3a, x1x3b, x2x3a, x2x3b}. Since no graph in F
contains a subset of edges isomorphic to E and avoids N , we have H ̸∈ F ,
a contradiction.

Case 2: a = x3, b ∈ X3, and c ∈ X4. — Consider the subgraph H of G′
n

induced on {x1, x2, x3, x4, b, c}. The set of edges of H includes

E =
{

x1x2x3, x1x2x4, x1x3x4, x2x3x4, x1x2b, x1x4b,

x2x4b, x1x2c, x1x3c, x2x3c, abc

}
Since no graph in F contains a subset of edges isomorphic to E, we have
H ̸∈ F , a contradiction.

For (ii), suppose for a contradiction that there exists an edge abc spanning
three classes that correspond to an edge in Figure 5.1. Up to symmetry,
there are two cases.

Case 1: The edge abc intersects
⋃4

i=1 Xi in two vertices. — Without
loss of generality, a ∈ X1, b ∈ X4, and c ∈ X7. Observe that we cannot
have both a = x1 and b = x4 as otherwise c ̸∈ X7 by definition of the
classes, N(x1, x4) is disjoint from X7. Without loss of generality, b ̸= x4.
We consider the subgraph H of G′

n induced on {x2, x3, x4, a, b, c}. The set
of edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x2x3b, x2x4c, x3x4c, abc}
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and avoids edges containing both x4 and b. Since no graph in F contains
a subset of edges isomorphic to E while avoiding edges containing both x4
and b, we have H ̸∈ F , a contradiction.

Case 2: The edge abc does not intersect
⋃4

i=1 Xi. — Without loss of
generality, a ∈ X5, b ∈ X6, and c ∈ X7. We define the subgraph H of G′

n

induced on {x1, x2, x3, a, b, c}. The set of edges of H includes

E = {x1x2x3, x1x2b, x1x2c, x1x3a, x1x3c, x2x3a, x2x3b, abc}

and avoids edges N = {x1x2a, x2x3c, x1x3b}. Since no graph in F contains
a subset of edges isomorphic to E while avoiding N we have H ̸∈ F , a
contradiction.

Finally, for (iii), suppose for a contradiction that there exist vertices
a ∈ Xi, b ∈ Xj , c ∈ Xk such that Xi, Xj , Xk do not correspond to an edge
in Figure 5.1 and abc ̸∈ E(G′

n). Up to symmetry of classes, there are three
cases.

Case 1: We have i, j, k ∈ [4]. — Without loss of generality, a ∈ X1, b ∈
X2, and c ∈ X3. By the definition of X1, X2, X3, note that at most one
of a, b, c is in {x1, x2, x3}. Without loss of generality, b ̸= x2 and c ̸= x3.
We define the subgraph H of G′

n induced on {x2, x3, x4, a, b, c}. The set of
edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x3x4b, x2x4c}

and avoids edges N = {abc, x2x3b, x2x4b, x2x3c, x3x4c}. Since no graph
of F contains a subset of edges isomorphic to E while avoiding edges in N ,
H ̸∈ F , a contradiction.

Case 2: Precisely two of i, j, k are in [4]. — Without loss of generality,
a ∈ X1, b ∈ X2, and c ∈ X6. Observe that by the definition of X6, at most
one of a, b is in {x1, x2}; without loss of generality, b ̸= x2. We define the
subgraph H of G′

n induced on {x2, x3, x4, a, b, c}. The set of edges of H

includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x3x4b, x2x3c, x3x4c}

and avoids edges N = {abc, x2x3b, x2x4b, x2x4c}. Since no graph in F
contains a subset of edges isomorphic to E while avoiding edges in N , we
have H ̸∈ F , a contradiction.

Case 3: Exactly one of i, j, k is in [4]. — Without loss of generality,
a ∈ X1, b ∈ X5, and c ∈ X6.
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We define the subgraph H of G′
n induced on {x2, x3, x4, a, b, c}. The set

of edges of H includes

E = {x2x3x4, x2x3a, x2x4a, x3x4a, x2x3b, x2x4b, x3x4b, x2x3c, x3x4c}

and avoids edges N = {abc, x2x4c, x3x4b}. Since, no graph of F contains
a subset of edges isomorphic to E while avoiding edges in N , H ̸∈ F , a
contradiction.

We conclude that all conditions (i), (ii), and (iii) hold, i.e., G′
n is a blow-

up of F. □

Finally, we show that G′
n is almost balanced. Recall that G′

n contains a
subgraph G′′

n with δ+
2 (G′′

n) ⩾ ( 4
7 − 48ε1/4)n. Fix α ⩾ 0 so that a largest

class in G′
n has size at least

( 1
7 + α

)
n. Without loss of generality, X1 is

a largest class. We bound the co-degree in G′′
n of pairs containing vertices

in X1. Observe that there are three sets of classes disjoint from X1 that
appear as neighborhoods of vertex pairs in G′′

n. Namely,

N(x1, x2) ⊆ X3 ∪ X4 ∪ X6 ∪ X7;
N(x1, x3) ⊆ X2 ∪ X4 ∪ X5 ∪ X7;
N(x1, x4) ⊆ X2 ∪ X3 ∪ X5 ∪ X6.

Thus, in G′′
n, we have

d(x1, x2) + d(x1, x3) + d(x1, x4) ⩽
7∑

i=2
2|Xi| ⩽

(
12
7 − 2α

)
n.

By averaging, one of d(x1, x2), d(x1, x3), d(x1, x4) is at most
( 4

7 − 2α
3
)

n.
Thus, δ+

2 (G′′
n) ⩽ 4n

7 , a contradiction if δ+
2 (Gn) ⩾

( 4
7 + β

)
n. We conclude

that γ+(J4) ⩽ 4
7 . To see that G′′

n should be approximately balanced, note
that by the minimum positive co-degree condition on G′′

n, we thus must
have 2α

3 ⩽ 48ε1/4, i.e., G′′
n (and G′

n) contains no class of size larger than( 1
7 + 72ε1/4)n. This upper bound implies that G′

n contains no class of size
smaller than

( 1
7 − 432ε1/4)n. □

We determine the positive co-degree density and the asymptotically
unique extremal construction for F4,2. Since the proof is analogous to (but
simpler than) the proof of Theorem 2.4, we only include a sketch.

Sketch of the proof of Theorem 2.4. — Observe first that F4,2 is 6-
partite, so it is not contained in the balanced blow-up of K3

5 , which implies
γ+(F4,2) ⩾ 3

5 . We now show that γ+(F4,2) ⩽ 3
5 . Let F be the family of

seven 6-vertex 3-graphs depicted in Figure 5.3.
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X1 X2 X3 X4 X5 X5
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6

3 4 5
3 4 6

X1 X2 X3 X4 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6

2 3 4
2 3 5
2 3 6

X1 X2 X3 X3 X4 X4
1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 4 6
1 5 6

2 3 4
2 3 5
2 4 6
2 5 6

X1 X1 X2 X2 X3 X3
1 2 3
1 2 4
1 3 5
1 4 5

2 3 6
2 4 6

3 5 6
4 5 6

X1 X2 X3 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 2 6

X1 X2 X2 X3 X3 X3
1 2 3
1 2 4
1 2 5
1 3 6
1 4 6
1 5 6

X1 X1 X1 X2 X2 X2

Figure 5.3. The family F of seven 6-vertex 3-graphs.

Observe that F consists of the empty 3-graph and the 6-vertex blow-
ups of K3

3 , K4
3 , and K3

5 . Thus, F is exactly the set of 6-vertex induced
subgraphs of the balanced blow-up of K3

5 .
Using flag algebras, we show that for sufficiently large n, if Gn is a

F4,2-free n-vertex 3-graph with δ+
2 (Gn) ⩾ 3n

5 , then the 6-vertex 3-graphs
with positive density in Gn are in F . The details of the calculations by
computer are available at https://lidicky.name/pub/pco/. Using the
induced removal lemma (Theorem 5.2), Gn has a small edit distance to
G′

n, where every 6-vertex subgraph belongs to F .
Recall that γ+(K3

4 ) ⩽ 0.543 < 3
5 , so by Lemma 3.2, G′

n contains a
subgraph with minimum positive co-degree larger than (0.543+ε)n for some
ε > 0. Thus, we can assume G′

n contains K3
4 , say on vertices v1, v2, v3, v4.

A search through F shows that there are only two possible subgraphs on
5 vertices containing K3

4 .

A :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 3 5

B :=

1 2 3 4 5
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5

2 3 4
2 4 5

3 4 5
2 3 5

1 4 5

Note that A is the (unique) 5-vertex blow-up of K3
4 and B = K3

5 . We now
partition V (G′

n) into five sets X1, . . . , X5 as follows. Put vi ∈ Xi for i ∈ [4].
For v ∈ V (G′

n) \ {v1, v2, v3, v4}, define Gv := Gn[v1, v2, v3, v4, v]. If Gv is
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isomorphic to A, then put v ∈ Xi, where dGv
(v, vi) = 0. If Gv is isomorphic

to B, then put v ∈ X5.
An inspection of cases establishes the following claim.

Claim 5.4. — G′
n satisfies the following conditions.

(i) For every i ∈ [5], no edge of G′
n intersects Xi in more than one

vertex.
(ii) For every a ∈ Xi, b ∈ Xj , and c ∈ Xk with i, j, k pairwise distinct,

abc ∈ E(G′
n).

In particular, G′
n is a blow-up of K3

5 . From here, the positive co-degree
condition can be used to establish that the vertex-partition of G′

n is essen-
tially balanced. □

Finally, Theorem 2.6 was proved using flag algebras. The certificates
for the proofs are available at https://lidicky.name/pub/pco/. These
bounds are unlikely to be tight.

6. Concluding remarks

While we significantly expand the known sets of jumps and achievable
values for γ+, the general behavior of γ+ remains mysterious, even for r =
3. It is unclear whether γ+ has a jump everywhere, though we conjecture
that more jumps exist than are characterized in Theorem 2.1.

Question 6.1. — For r ⩾ 3, which values of α ∈ [ 2
2r−1 , 1] are γ+-

jumps? Does there exist an α ∈ [ 2
2r−1 , 1] which is not a γ+-jump?

Many more concrete questions could be asked when r = 3. For example, it
is unclear, how far Theorem 2.2 is from completely characterizing achievable
densities in the range [0, 1

2 ] when r = 3.

Question 6.2. — Are there achievable values of γ+ in [ 2
5 , 1

2 ] that are
not of the form k−2

2k−3 , when r = 3?

A negative answer to Question 6.2 would suggest some similarity between
γ+ and π, since the extremal constructions in Theorem 2.2 are a fairly
natural analogue of Turán graphs. However, note that there is no hope for
an Erdős–Stone–Simonovits-type result giving values of γ+. Indeed, since
a balanced blow-up of K3

4 has positive co-degree density 1
2 , every 3-graph

F with 0 < γ+(F ) < 1
2 is 4-partite.

To begin addressing either Question 6.1 or 6.2, it seems natural to start
with the next interval between known achievable values. Even this next
case seems difficult.
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Question 6.3. — For r = 3, is every α ∈ [ 2
5 , 3

7 ) a γ+-jump? Is there a
family F with γ+(F) ∈

( 2
5 , 3

7
)
?

The use of flag algebras introduces the potential for new approaches
to positive co-degree questions, particularly when combined with proving
the existence of γ+-jumps. As illustrated by Theorems 2.4 and 2.5, flag
algebra calculations have the potential to directly determine values of γ+,
and even inexact bounds (e.g., γ+(K3

4 ) ⩽ 0.543) given by flag algebras are
sometimes substantially better and more useful than what seems tractable
by hand. When combined with known jumps of the function γ+, flag algebra
bounds also have the potential to produce exact results. For instance, any
3-graph F that can be shown via a flag calculation to have γ+(F ) < 2

5 must
have γ+(F ) ∈

{
0, 1

3
}

. Thus, obtaining estimates via flags and “rounding
down” via known jumps is a very efficient way to determine the densities
of many small 3-graphs. Since we can directly characterize those 3-graphs
with positive co-degree density in

{
0, 1

3
}

, it is now also possible to directly
determine by inspection whether a fixed 3-graph F has γ+(F ) ∈

{
0, 1

3
}

;
however, it seems unlikely that the set

F(r, d) := {F an r-graph : γ+(F ) = d}

can be as simply characterized for other values of d, even when r = 3. We
are interested to see whether further understanding of jumps will include
characterizations of this type. If they do not, the potential combination of
estimated densities with the theory of jumps is an appealing approach to
determining densities exactly.

It is also open whether every achievable value of γ+ can be achieved as
the density of a single r-graph. Theorem 2.3 shows that 2

5 is achievable by
a single 3-graph, as is every achievable density known outside the interval( 2

5 , 1
2
)
.

Question 6.4. — For a fixed k ⩾ 5, is there a 3-graph Fk such that
γ+(Fk) = k−2

2k−3 ? More generally, if F is a family of r-graphs with γ+(F) =
α, does there always exist a single r-graph F with γ+(F ) = α?

Every 3-graph that is not the subgraph of a (blow-up of a) suspension
will have positive co-degree density at least 1

2 . The complete list of known
achievable densities at least 1

2 is as follows: 1
2 (achieved by F3,2), 4

7 (achieved
by J4), 3

5 (achieved by F4,2), and 2
3 (achieved by the Fano plane).

Question 6.5. — For r = 3, find other achievable values for γ+ larger
than 1

2 . Is there an α ∈
[ 1

2 , 1
)

which is a γ+-jump? Is there an α ∈
[ 1

2 , 1
)

for which we can characterize the 3-graphs with γ+(F ) = α?
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Very little is known about the γ+ function for r-graphs when r ⩾ 4.
A natural starting point would be to study extensions of 3-graphs whose
positive co-degree densities are known. For example, the r-daisy Dr is the
6-edge r-graph on r + 2 vertices whose all six edges contain the same r − 2
vertices and each pair of the remaining 4 vertices is in one edge. There was
a recent breakthrough on the Turán density of r-daisies [16]. Note that J4
is the 3-daisy.

Question 6.6. — What is γ+(Dr) for r ⩾ 4?
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