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THE OVERFULL NINE DRAGON TREE CONJECTURE
IS TRUE

by Sebastian MIES & Benjamin R. MOORE (*)

Abstract. — Chen, Kim, Kostochka, West, and Zhu conjectured a strengthen-
ing of the Nine Dragon Tree Theorem that every graph that is (k, d)-sparse and
has no overfull set decomposes into k + 1 forests such that one of the forests has
maximum degree d. Intuitively, the conjecture says that while the fractional ar-
boricity bound in the Nine Dragon Tree Theorem is tight, we can relax the bound
very slightly and still get the same result, so long as the obvious obstruction does
not occur - that we can still decompose into k +1 forests. We prove this conjecture.

1. Introduction

In this paper, graphs may have parallel edges, but no loops. Also, we
use the notation that e(H) = |E(H)| and v(H) = |V (H)|. Recall that a
decomposition is a partitioning of the edge set of a graph into subgraphs.
This paper will be interested in decomposing graphs into forests. Since a
forest on n vertices has at most n − 1 edges, it is easy to see that if a graph
G decomposes into k forests, e(G) ⩽ k(v(G) − 1), and further that this
inequality holds over every subgraph. Rather surprisingly, Nash-Williams’
Theorem [10] states that the obvious necessary condition is sufficient. That
is, that a graph G decomposes into k forests if and only if γ(G) ⩽ k, where

γ(G) = max
H⊆G,v(H)⩾2

e(H)
v(H) − 1 .

We call γ(G) the fractional arborcity of G. While the theorem gives
an exact characterization, one might hope to strengthen the theorem in
certain instances. In particular, we can observe that the parameter γ is not
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always an integer. Thus, if we have graphs G1, G2, G3 with γ(G1) = 2.5,
γ(G2) = 2.1, and γ(G3) = 2.99, then Nash-Williams’ Theorem says that all
of these graphs decompose into three forests, but cannot decompose into
two forests. But of course, one should anticipate the graph with fractional
arboricity 2.1 to be much sparser than the graph with fractional arboricity
2.99, and so one might anticipate more structure could be deduced for the
sparser graph.

While there are many possible ways to gain additional structure on the
forest decomposition, for this paper we interested in the following ques-
tion: what fractional arboricity do we need to ensure we can find a forest
decomposition where one of the forests has maximum degree d?

Hopefully this question looks natural and interesting in its own right,
but if one needs more convincing, we give some of the original motivation.
At one point there was a large line of research trying to figure out the
so-called game chromatic number of planar graphs. We briefly describe the
problem: We have two players Alice and Bob and k colours. Starting with
Alice, Alice and Bob alternatively each pick a vertex and colour it. Alice
wins the game if the graph ends up properly k-coloured (i.e. no edge has its
endpoints coloured the same colour), and Bob wins otherwise. Rather sur-
prisingly, Zhu showed there is a relationship between forest decompositions
with bounded maximum degree and the game chromatic number:

Theorem 1.1 ([12]). — Suppose G decomposes into two forests, F1, F2
such that F2 has maximum degree d. Then the game chromatic number of
G is at most 4 + d.

Thus, this theorem motivates finding forest decompositions with bounded
maximum degree. Montassier, Ossona de Mendez, Raspaud, and Zhu [9]
posited the Nine Dragon Tree Conjecture(1) (now theorem) as an answer
to this question:

Theorem 1.2 (Nine Dragon Tree Theorem [4]). — Let G be a graph.
Let k and d be positive integers. If γ(G) ⩽ k + d

k+d+1 , then there is a
decomposition into k + 1 forests, where one of the forests has maximum
degree at most d.

Many partial results were given (see [11, 9, 5, 1]) before Jiang and Yang
gave a beautiful proof of the entire conjecture.

Further, the fractional arboricity bound given in the Nine Dragon Tree
Theorem is best possible in the following sense:

(1) named after a tree in Kaohsiung, Taiwan which is far from acyclic
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Theorem 1.3 ([9]). — For any positive integers k and d there are ar-
bitrarily large simple graphs G and a set S = {e1, . . . , ed+1} ⊆ E(G) of
d + 1 edges such that γ(G − S) = k + d

k+d+1 and G does not decompose
into k + 1 forests where one of the forests has maximum degree d.

Thus, it looks like the story is essentially complete. However, two possible
generalizations were proposed. The more famous one is the so-called Strong
Nine Dragon Tree Conjecture:

Conjecture 1.4 (Strong Nine Dragon Tree Conjecture [9]). — Let G

be a graph. Let k and d be positive integers. If γ(G) ⩽ k + d
k+d+1 , then

there is a decomposition into k + 1 forests, where one of the forests has
every connected component having at most d edges.

This conjecture has attracted some amount of attention - see for example
[8, 9, 11, 5, 6], and still remains fairly wide open. However, there is a dif-
ferent way to generalize the Nine Dragon Tree Theorem, which is the focus
of this paper. The high level idea is simple, it says that while the fractional
arboricity bound is best possible, if we forbid small dense subgraphs, we
should be able to strengthen the bound slightly. It requires definitions to
state.

Definition 1.5. — For integers k and d, we say a graph G is (k, d)-
sparse if for every subgraph H of G we have

β(H) := (k + 1)(k + d)v(H) − (k + d + 1)e(H) − k2 ⩾ 0

We pause to give some intuitive explanation of this parameter via com-
parison to the fractional arboricity of a graph. A graph G has fractional
arboricity at most k + d

k+d+1 if and only if for every subgraph H of G we
have

(k + 1)(k + d)v(H) − (k + d + 1)e(H) − k2 − kd − k − d ⩾ 0.

Thus being (k, d)-sparse is very nearly the same thing as fractional ar-
boricity being less than k + d

k+d+1 , except we have this small −kd − k − d

additive term difference. Thus more graphs are (k, d)-sparse than have frac-
tional arboricity at most k + d

k+d+1 . Of course, this leaves open the possi-
bility that a graph is (k, d)-sparse, but does not even decompose into k + 1
forests by Nash-Williams’ Theorem. Thus, this motivates the following def-
inition:

Definition 1.6. — Fix a positive integer k. For a graph G a subgraph
H is overfull if

e(H) > (k + 1)(v(H) − 1).
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Our result is the following, confirming a conjecture in [1]:

Theorem 1.7. — Every graph which is (k, d)-sparse and has no overfull
subgraph decomposes into k + 1 forests such that one of the forests has
maximum degree d.

Observe that this implies the Nine Dragon Tree Theorem since every
graph with γ(G) ⩽ k + d

k+d+1 is also (k, d)-sparse. Further, such a graph
has no overfull set, as the existence of an overfull set implies the fractional
arboricity is strictly larger than k + 1. Prior to our theorem, Theorem 1.7
was only known when k ⩽ 2 and d ̸= 1 [1].

Naturally, one would ask if we can strengthen the condition (k, d)-sparse
even further. However, a construction in [5] shows we cannot:

Theorem 1.8 ([5]). — There exist arbitrarily large graphs G with no
overfull set and such that for all induced subgraphs H ̸= G, we have β(H) ⩾
0, but β(G) = −1, and G does not decompose into k + 1 forests such that
one of the forests has maximum degree d.

Note this is best possible, as β is an integer. It seems increasingly likely
that the Strong Nine Dragon Tree Conjecture is true, and further that it
can be strengthened to an overfull version. We make the natural conjecture:

Conjecture 1.9. — Every graph which is (k, d)-sparse and has no
overfull set decomposes into k + 1 forests such that one of the forests has
every component containing at most d edges.

As this conjecture implies the Strong Nine Dragon Tree Conjecture, it
will likely be hard to solve. Nevertheless, the current approaches towards
the Strong Nine Dragon Tree Conjecture, if they lead to a full resolution of
the conjecture, appear as if they will extend to a proof of Conjecture 1.9.

Now, let us make some remarks about the proof of Theorem 1.7. One
might note that (k, d)-sparsity is not the most natural of definitions. While
it happens to be best possible from Theorem 1.8, this is not the origi-
nal motivation. The original motivation is coming from how the original
papers attempted to prove the Nine Dragon Tree Theorem. They wanted
to use the so called potential method (and in fact, created it), and using
(k, d)-sparseness allows a more easy facilitation of the technique. It is a
slightly strange phenomenon, but due to the inductive nature of the po-
tential method, it can be easier to prove stronger statements due to the
leverage gained by the inductive hypothesis. See for example [2] for a com-
prehensive overview of the potential method. Thus, one might anticipate
that to prove Theorem 1.7 we would give a potential method proof of the
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Nine Dragon Tree Theorem. This is surprisingly not the case, and we ac-
tually proceed in a similar fashion to the only known proof of Nine Dragon
Tree Theorem, and also all of the Strong Nine Dragon Tree Theorem papers
(see [8, 7, 4, 3, 6, 11])

Our proof proceeds as follows. We start by observing a vertex minimal
counterexample decomposes into k + 1 forests where k of the forests are
spanning trees. This is a standard lemma proven in [4], we will omit its
proof. With this, our goal is to take some forest decomposition (which we
pick carefully) T1, . . . , Tk, F where Ti are spanning trees and modify it to
a new decomposition where F satisfies the theorem. To do this, we will
pick a vertex v ∈ V (F ) which has too large degree, orient all edges of
T1, . . . , Tk towards v and “explore” from it to create what we call the “ex-
ploration subgraph”. For those knowledgeable with the Strong Nine Dragon
Tree proofs, this subgraph is exactly the same as the exploration subgraphs
in those papers, except now we are rooted at a specific large degree ver-
tex, rather than a component that is too large. For those unfamiliar, the
exploration graph is the induced subgraph of all vertices reachable from v

by directed paths, where we view the edges of F as bidirected. Now, our
goal is to argue either we can reduce the degree of v in F without creating
other large degree vertices, or argue that the exploration subgraphs frac-
tional arboricity is too large. So we proceed by the standard arguments
from the Nine Dragon Tree Theorem paper that shows two vertices joined
by a directed edge in some Ti have the sum of their degrees being at least
d, and that components of F cannot have too many “small” components
near them. The new idea to deduce the overfull conjecture is rather simple,
we show that in the component of F containing v, we can exploit the fact
that all edges are oriented towards v to gain even more structure over the
“nearby components” with few edges (henceforth called a small child). In
particular, we will show that one cannot “generate” a small child if you are
a neighbour of v in the same component of F as v. This turns out to be
sufficient to prove that the exploration graph is not (k, d)-sparse, assuming
we could not make any local exchange, completing the theorem. As the
paper heavily relies on techniques from previous papers, we recommend
reading either [4] or [3] first.

The structure of the paper is as follows. In Section 2, we define our
minimal counterexample. In Section 3 we prove our key lemma on children
generated by neighbours of the root vertex, as well as recall lemmas proven
in [4]. Then in Section 4 we observe that a density calculation proves the
theorem.
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2. Setting up the minimal counterexample

The goal of this section is to set up everything we need to define our
minimal counterexample. Note that as we will also consider digraphs, we
will use the notation (u, v) is a directed edge from u to v. For the rest
of the paper we fix integers k, d ∈ N, and always assume that we have
a graph G which is a counterexample with minimum number of vertices
to Theorem 1.7. The first observation we need is that G decomposes into
k spanning trees and another forest. First we make the following obvious
observation:

Observation 2.1. — If G has no overfull set, then G has fractional
arboricity at most k + 1, and thus decomposes into k + 1 forests.

Proof. — If G has fractional arboricity strictly larger than k + 1, then
there exists an induced subgraph H such that e(H) > (k + 1)(v(H) − 1),
and thus H is overfull, a contradiction. □

To strengthen this to get that G decomposes into k spanning trees and
another forest now follows from a minor tweak to the proof to Lemma 2.1
of [4] so we omit the proof:

Lemma 2.2 ([4]). — Every graph G that is a vertex minimal counterex-
ample to Theorem 1.7 admits a decomposition into forests T1, . . . , Tk, F

such that T1, . . . , Tk are spanning trees.

Given a decomposition of G, we will want to measure how close it is to
satisfying Theorem 1.7.

Definition 2.3. — The residue function ρ(F ) of a forest F is defined as∑
v∈V (F )

max{0, deg(v) − d}.

We will want to find the decomposition with one forest minimizing the
residue function.

Notation 2.4. — Over all decompositions into k spanning trees,
T1, . . . , Tk, and a forest F we choose one where F minimizes ρ. This forest
F has a component R∗ with a vertex of degree at least d + 1, as G is a
counterexample. We choose a vertex r ∈ V (R∗) of maximum degree (which
is at least 2) in R∗. We fix R∗ and r for the rest of the paper.

Definition 2.5. — We define F to be the set of decompositions into
forests (T1, . . . , Tk, F ) of G such that T1, . . . , Tk are spanning trees of G;
R∗ is a connected component of the undirected forest F and the edges of
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T1, . . . Tk are directed towards r. We let F∗ ⊆ F be the set of decomposi-
tions (T1, . . . , Tk, F ) ∈ F such that ρ(F ) = ρ∗.

The next definition is simply to make it easier to talk about decomposi-
tions in F .

Definition 2.6. — Let T = (T1, . . . , Tk, F ) ∈ F . We say that the (di-
rected) edges of T1, . . . , Tk are blue edges and the (undirected) edges of F

are red edges. We define E(T ) := E(T1) ∪ · · · ∪ E(Tk) ∪ E(F ). For a sub-
graph H ⊆ (V (G), E(T )) we write Eb(H) and Er(H) for the set of blue
and red edges of H, respectively. Furthermore, we write er(H) = |Er(H)|.

For a decomposition (T1, . . . , Tk, F ) ∈ F , and T ∈ {T1, . . . , Tk, F}, we
write degT (v) to mean the degree of v in T . In the case of the red forest
F , we will abuse notation and let degF (v) = deg(v). Finally, we can define
the critical subgraph which we will focus on for the rest of the paper:

Definition 2.7. — Let T ∈ F . The exploration subgraph HT of T is
the subgraph of (V (G), E(T )), where the vertex set V (HT ) consists of all
vertices v for which there is a sequence of vertices r = x1, . . . , xl = v such
that for all 1 ⩽ i < l it holds: (xi, xi+1) ∈ Eb(T ) or xixi+1 ∈ Er(T ), and
the set of edges of HT is defined as

E(HT ) =
{

xy ∈ Er(T )
∣∣x, y ∈ V (HT )

}
∪
{

(x, y) ∈ Eb(T )
∣∣x, y ∈ V (HT )

}
.

We also call a connected component of (V (G), Er(T )) a red component.

Now we turn our focus to the notion of legal orders, which is an ordering
of components of F that loosely tells us in what order we should augment
the decomposition.

Definition 2.8. — Let (T1, . . . Tk, F ) = T ∈ F . Let σ = (R1, . . . , Rt)
be a sequence of all red components in HT . We say σ is a legal order for
T if R1 = R∗, and further for each 1 < j ⩽ t, there is an ij < j such that
there is a blue directed edge (xj , yj) with xj ∈ V (Rij

) and yj ∈ V (Rj).

It will be useful to compare legal orders, and we will do so using the
lexicographic ordering.

Definition 2.9. — Let T , T ′ ∈ F . Suppose σ = (R1, . . . , Rt) and σ′ =
(R′

1, . . . , R′
t′) are legal orders for T and T ′, respectively. We say σ is smaller

than σ′, denoted σ < σ′, if (e(R1), . . . , e(Rt)) is lexicographically smaller
than (e(R′

1), . . . , e(R′
t′)). If t ̸= t′, we extend the shorter sequence with

zeros in order to make the orders comparable.
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To make it easier to discuss legal orders, we introduce some more vocab-
ulary:

Definition 2.10. — Suppose σ = (R1, . . . , Rt) is a legal order for T ∈
F . We say that Ri is a parent of Rj with respect to σ, if i < j holds and if
there is a blue edge (x, y) with x ∈ V (Ri), y ∈ V (Rj). In this case we also
call Rj a child of Ri with respect to σ that is generated by the edge (x, y).

Note that in the above definition, a component may have many parents,
and further aside from R∗, all red components have a parent. Further, a
child may be generated by many blue edges.

Definition 2.11. — Let (T1, . . . , Tk, F )=T ∈F and let σ =(R1, . . . , Rt)
be a legal order for T . Compliant to Definition 2.8 we choose a blue edge
(xj , yj) for all 1 < j ⩽ t. There might be multiple possibilities for this, but
we simply fix one choice for σ. We then denote Tσ := (V (HT ), Er(HT ) ∪
{(xj , yj) | 1 < j ⩽ t}), which defines a tree that we call the auxiliary tree
of σ. We always consider Tσ to be rooted at r.

With this tree in mind, each red component has a unique parent with
the exception of R∗, which has no parent.

Now we are in position to define our counterexample. As already outlined,
G is a vertex-minimal counterexample to the theorem. Further, we pick a
legal order σ∗ for a decomposition T ∗ = (T ∗

1 , . . . , T ∗
k , F ∗) ∈ F∗ such that

there is no legal order σ with σ < σ∗ for any T ′ ∈ F∗. We will use these
notations for the minimal legal order and decomposition throughout the
rest of the paper.

3. Structure of the exploration subgraph

Under the above set up, in [4] they show that the red components of
the exploration subgraph are well behaved. In particular, they prove the
following:

Lemma 3.1 (Corollary 2.5 from [4]). — Let C be a child of K with
respect to σ∗ that is generated by (x, y). If deg(y) < d, then deg(x) ⩾ d.

Lemma 3.2 (Lemma 2.6 from [4]). — Let K be a red component, and
suppose C1 and C2 are children generated by (x, x′) and (y, y′) respectively.
If xy ∈ E(K), then either deg(x′) ⩾ d or deg(y′) ⩾ d.

We only need one more lemma:
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Lemma 3.3. — Let C be a child of R∗ with respect to σ∗ generated by
(x, y) ∈ E(T ) for some T ∈ {T ∗

1 , . . . , T ∗
k }. If deg(y) ⩽ d − 1, then x ̸= r,

and xr ̸∈ E(R∗).

Proof. — We have that x ̸= r as r has no outgoing edges in T . If xr ∈
E(R∗), then as r is the only sink in T , T ′ := T + (x, r) − (x, y) is a tree.
Without loss of generality, suppose that T = T ∗

1 , and consider the forest
decomposition (T ′, T ∗

2 , . . . , T ∗
k , F ∗ −xr+xy). As y has degree at most d−1,

it now has degree at most d in F ∗ −xr+xy, the degree of x stays the same,
and the degree of r decreases by one. But this means the residue function
decreased, a contradiction. □

4. The density calculation

In this section we show that our exploration graph is not (k, d)-sparse.
We start off by defining an important set and subgraph. Let K be the set
of red components of HT with a vertex of degree at least d.

Definition 4.1. — In an arbitrary fashion we assign each red com-
ponent C that is not R∗ to a vertex x such that there is a blue arc
(x, x′) ∈ Eb(T ∗) generating C. Let C(x) denote the set of components
that have been assigned to x ∈ V (HT ∗). Furthermore, for H ⊆ HT ∗ let
C(H) := C(V (H)) :=

⋃
x∈X C(x) and

HC :=
(

V (H) ∪
⋃

C∈C(H)

V (C), E(H) ∪
⋃

C∈C(H)

E(C)
)

.

Now observe the following partitioning of the red subgraph of the explo-
ration subgraph that is justified by Lemma 3.1:

Claim 4.2. — Er(HT ) =
⋃̇

K∈KE(KC).

Proof. — If a component C of HT does not have a vertex of degree at
least d, then it is not the root and hence has a parent K. If K does not
contain a vertex of degree at least d, then we contradict Lemma 3.1 and
thus C is contained in KC . □

Let us make some observations about the density of KC .

Lemma 4.3 (Claim 2.8 from [4]). — Let K be a red component and K ′

be a connected subgraph of K. Suppose K ′ satisfies the following condi-
tions:

(1) If degK′(x) < d, then C(x) = ∅.
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(2) There is a vertex x ∈ V (K ′) with degK′(x) ⩾ d.

Then

e(K ′
C)

v(K ′
C) ⩾

d

d + k + 1 .

Corollary 4.4. — Let K ∈ K − R∗. Then e(KC)
v(KC) ⩾ d

d+k+1 .

Proof. — Apply Lemma 4.3 with K ′ = K. (2) holds for K since K ∈ K.
(1) holds by Lemma 3.1. □

Lemma 4.5. — There are non-negative integers ℓ, n ∈ N and disjoint
subgraphs K1, . . . , Kn of R∗ such that ℓ ⩾ d + 1, e(Ki

C)
v(Ki

C) ⩾ d
d+k+1 , e(R∗

C) =
ℓ +

∑n
i=1 e(Ki

C) and v(R∗
C) = ℓ + 1 +

∑n
i=1 v(Ki

C) − n.

Proof. — Let n ∈ N such that K1, . . . , Kn are the components of R∗ − r

containing a vertex of degree at least d. We want to apply Lemma 4.3. Let
i ∈ {1, . . . , n} and let r′ be the neighbour of r in Ki. Note that (2) holds
for Ki by definition. Furthermore, (1) holds for R∗, degKi(x) = degR∗(x)
for every vertex x ∈ V (Ki) − r′ and C(r′) = ∅ by Lemma 3.3. Thus,
e(Ki

C)
v(Ki

C) ⩾ d
d+k+1 .

Next, let R′ be the subgraph of R∗ induced by r and its neighbours, as
well as any vertex not in Ki for any i ∈ {1, . . . , ℓ}. then R′ is connected
and C(R′) = ∅. Furthermore, e(R′) ⩾ d + 1 since degR∗(r) ⩾ d + 1. The
lemma follows by letting ℓ := e(R′). □

With this we are ready to prove the conjecture.

Lemma 4.6. — The graph H := HT ∗ satisfies

(k + 1)(k + d)v(H) − (k + d + 1)e(H) − k2 < 0,

and thus, G is not (k, d)-sparse.

Proof. — Suppose to the contrary that β(H) ⩾ 0. As T ∗
1 , . . . , T ∗

k are
spanning trees, we have e(H) = k(v(H)−1)+er(H). Thus, β(H) = dv(H)+
(d + k + 1)(k − er(H)) − k2 ⩾ 0, which we can rearrange to

d

d + k + 1 ⩾
er(H) − k + k2

d+k+1
v(H) .
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Using Claim 4.2 and Lemma 4.5 we can rearrange this further to:

d

d + k + 1 ⩾
e(R∗

C) +
∑

K∈K−R∗ e(KC) − k(1 − k
d+k+1 )

v(R∗
C) +

∑
K∈K−R∗ v(KC)

=
ℓ − k( d+1

d+k+1 ) +
∑n

i=1 e(Ki
C) +

∑
K∈K−R∗ e(KC)

ℓ + 1 − n +
∑n

i=1 v(Ki
C) +

∑
K∈K−R∗ v(KC)

⩾
d + 1 − k( d+1

d+k+1 )
d + 2

=
(d + 1) d+1

d+k+1
d + 2

>
(d + 1) d

d+1
d + k + 1

= d

d + k + 1 ,

which is a contradiction. Thus, β(H) < 0. □
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