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A NOTE ON MATCHING VARIABLES TO EQUATIONS

by Attila JOÓ (*)

Abstract. — We showed with J. P. Gollin that if a (possibly infinite) homo-
geneous linear equation system has only the trivial solution, then there exists an
injective function from the variables to the equations such that each variable ap-
pears with non-zero coefficient in its image. Shortly after, a more elementary proof
was found by Aharoni and Guo. In this note we present a very short matroid-
theoretic proof of this theorem.

1. Introduction

Let F be a field, and A ∈ Fm×n. Suppose that the homogenous linear
equation system Ax = 0 has only the trivial solution x = 0. Then for each
subset C of the columns of A, there must be at least |C| rows where at least
one column in C have a non-zero element. Indeed, otherwise, the columns
in C are linearly dependent which leads to a non-trivial solution of Ax = 0.
It follows by Hall’s theorem that the columns can be matched to the rows
along non-zero elements. More precisely, there is an injection φ : [n] → [m]
such that aφ(j),j ̸= 0 for every j ∈ [n].

We investigated with J. P. Gollin if this remains true for infinite equation
systems (with finitely many variables in each equation). Although Hall’s
marriage theorem has a certain generalization for infinite graphs (see [2,
Theorem 3.2]), the argument above does not seem to be adaptable to the
infinite case. Even so, other tools in infinite matching theory (namely [10,
Theorem 1]) let us answer the question affirmatively:

Theorem 1.1. — Let F be a field, and let a : I × J → F be a function
such that for each fixed i ∈ I, there are only finitely many j ∈ J such that
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ai,j ̸= 0. Suppose that the homogenous linear equation system defined by
a has only the trivial solution, i.e.

∑
j∈J ai,jxj = 0 for each i ∈ I for a

function x : J → F only if x is constant zero. Then there is an injection
φ : J → I such that aφ(j),j ̸= 0 for every j ∈ J .

Shortly after, a more elementary proof was found by Aharoni and Guo
[3]. They also pointed out a short matroid-theoretic proof in the finite
case. This made us wonder if a similar matroid-theoretic approach could
be successful for infinite equation systems. The key tools we use in this
note are the so called thin-sum matroids introduced by Bruhn and Diestel
(see [6, Theorem 18]) and further investigated by Afzali and Bowler in
[1]. These together with (the dualization of) a base exchange property of
infinite matroids due to Aharoni and Pouzet [4, Theorem 2.1] leads to a
short proof of Theorem 1.1. The aim of this note is to present this proof.

2. Preliminaries

Infinite matroids were introduced by Higgs in the late 1960s [8]. Several
decades later the same concept was discovered independently by Bruhn
et al. in [7] together with the following axiomatization: A matroid is an
ordered pair M = (E, I) with I ⊆ P(E) such that

(I) ∅ ∈ I;
(II) I is closed under taking subsets;

(III) For every I, J ∈ I where J is ⊆-maximal in I and I is not, there
exists an e ∈ J \ I such that I ∪ {e} ∈ I;

(IV) For every X ⊆ E, any I ∈ I∩P(X) can be extended to a ⊆-maximal
element of I ∩ P(X).

The sets in I are called independent while the sets in P(E) \ I are depen-
dent. The maximal independent sets (exists by (IV)) are called bases. The
minimal dependent sets are the circuits. Every dependent set contains a cir-
cuit (which is a non-trivial fact for infinite matroids). For an X ⊆ E, the
pair M ↾ X := (X, I ∩ P(X)) is a matroid and it is called the restriction
of M to X. We write M −X for M ↾ (E \X) and call it the minor obtained
by the deletion of X. The contraction of X in M is the matroid M/X on
E \ X in which I ⊆ E \ X is independent iff J ∪ I is independent in M for
a (equivalently: for every) set J that is maximal among the independent
subset of X. Contraction and deletion commute, i.e. for disjoint X, Y ⊆ E,
we have (M/X) − Y = (M − Y )/X. Matroids of this form are the minors
of M . We say that X ⊆ E spans e ∈ E in matroid M if either e ∈ X or
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{e} is dependent in M/X. The dual M∗ of M is the matroid on the same
ground set in which a set is independent if it is disjoint from a base of
M . Contraction and deletion are related by duality in the following way:
(M/X −Y )∗ = M∗/Y −X. A matroid is called finitary if all its circuits are
finite and it is cofinitary if its dual is finitary. The class of finitary matroids
is closed under taking minors and thus so is the class of cofinitary matroids.

Theorem 2.1 (Aharoni and Pouzet, [4, Theorem 2.1]). — If M is a
finitary matroid, then for every bases B0 and B1 of M , there is a bijection
f : B0 → B1 such that B0 \ {x} ∪ {f(x)} is a base of M for each x ∈ B0.

For short proofs of generalizations of Theorem 2.1 using the same notation
we are using in this article, see [9].

The following concept of thin-sum matroids was introduced by Bruhn
and Diestel (see [6, Theorem 18]): Let X be a set and let F be a field. A
family {fe : e ∈ E} of X → F functions is called thin if for each x ∈ X

there are only finitely many e ∈ E with fe(x) ̸= 0. Note that for any
λ : E → F, the function

∑
e∈E λefe is well-defined pointwise. An I ⊆ E

is thin independent when
∑

e∈I λefe is the constant zero function only if
λe = 0 for each e ∈ I.

Theorem 2.2 (Afzali and Bowler [1, Corollary 3.4]). — The notion of
thin independence in a thin family of functions gives rise to a cofinitary
matroid.

For more information about infinite matroids, we refer to [5].

3. Proof of the main result

We show by a relatively simple dualization argument that Theorem 2.1
remains true for cofinitary matroids.

Theorem 3.1. — If M is a cofinitary matroid, then for every bases B0
and B1 of M , there is a bijection f : B0 → B1 such that B0 \ {x} ∪ {f(x)}
is a base of M for each x ∈ B0.

Proof. — First we show that we can assume without loss of generality
that B0 and B1 are disjoint and B0 ∪ B1 = E(M). Indeed, suppose we
already know this special case of the theorem and let M ′ be the matroid
that we obtain from M by contracting B0 ∩ B1 and deleting E \ (B0 ∪ B1).
Then M ′ is still cofinitary, moreover, B0 \ B1 and B1 \ B0 are disjoint
bases of M ′ whose union is E(M ′). Let f ′ be a function that we obtain
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by applying the assumed special case of the theorem with M ′, B0 \ B1
and B1 \ B0. Then the extension f of f ′ to B0 where f(x) := x for every
x ∈ B0 ∩ B1 is as desired.

Note that M∗ is a finitary matroid and under our assumption B0 and
B1 are bases of M∗. Let g : B1 → B0 be a bijection that we obtain by
applying Theorem 2.1 with M∗, B1 and B0 (i.e. the roles of the bases are
switched). Then B1 \ {y} ∪ {g(y)} is a base of M∗ for each y ∈ B1. This
means that its complement B0 \{g(y)}∪{y} is a base of M for each y ∈ B1.
By substituting y with g−1(x), we conclude that B0 \ {x} ∪ {g−1(x)} is a
base of M for each x ∈ B0. Thus f := g−1 is suitable. □

Lemma 3.2. — For a matroid M the following are equivalent:

(i) For every bases B0 and B1 of M , there is a bijection f : B0 → B1
such that B0 \ {x} ∪ {f(x)} is a base of M for each x ∈ B0.

(ii) For every bases B0 and B1 of M , there is a bijection f : B0 → B1
such that B1 \ {f(x)} ∪ {x} is a base of M for each x ∈ B0.

Proof. — To derive one property from the other, apply the assumed
property while switching the roles of B0 and B1, then take the inverse
of the resulting function. □

Corollary 3.3. — If M is a cofinitary matroid, J is independent in
M and B is a base of M , then there is an injection f : J → B such that
B \ {f(x)} ∪ {x} is a base for each x ∈ B.

Proof. — Extend J to a base and apply Theorem 3.1 combined with
Lemma 3.2. □

Proof of Theorem 1.1. — For j ∈ J , let fj : I → F be defined as
fj(i) := ai,j . For i ∈ I, let fi : I → F be the function for which fi(i) = 1
and fi(i′) = 0 for i′ ̸= i.(1) Then {fk : k ∈ I ∪ J} is a thin family of
functions, thus by Theorem 2.2 it defines a cofinitary matroid M on I ∪ J

via thin independence. Moreover, I is base of M and J is independent
in it. Thus Corollary 3.3 applied with J and base I gives an injection
φ : J → I such that I \ {φ(j)} ∪ {j} is a base of M for each j ∈ J . But
then we must have fj(φ(j)) ̸= 0 since otherwise φ(j) is not spanned by
I \ {φ(j)} ∪ {j} in M because fφ(j)(φ(j)) = 1 while fk(φ(j)) = 0 for every
k ∈ (I \ {φ(j)} ∪ {j}), contradicting that I \ {φ(j)} ∪ {j} is a base of M .
By definition this means that aφ(j),j ̸= 0 for every j ∈ J as desired. □

(1) We assume that the index sets I and J are disjoint.
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