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Abstract. — We prove that the k-power of any planar graph G is contained
in H ⊠ P ⊠ Kf(∆(G),k) for some graph H with bounded treewidth, some path P ,
and some function f . This resolves an open problem of Ossona de Mendez. In fact,
we prove a more general result in terms of shallow minors that implies similar
results for many ‘beyond planar’ graph classes, without dependence on ∆(G). For
example, we prove that every k-planar graph is contained in H ⊠ P ⊠ Kf(k) for
some graph H with bounded treewidth and some path P , and some function f .
This resolves an open problem of Dujmović, Morin and Wood. We generalise all
these results for graphs of bounded Euler genus, still with an absolute bound on
the treewidth.

At the heart of our proof is the following new concept of independent interest.
An ℓ-blocking partition of a graph G is a partition of V (G) into connected sets
such that every path of length greater than ℓ in G contains at least two vertices
in one part. We prove that for some constant ℓ ⩾ 1 every graph of Euler genus g
has an ℓ-blocking partition with parts of size bounded by a function of ∆(G) and
g. Motivated by this result, we study blocking partitions in their own right. We
show that every graph G has a 2-blocking partition with parts of size bounded by
a function of ∆(G) and tw(G). On the other hand, we show that 4-regular graphs
do not have ℓ-blocking partitions with bounded size parts.

1. Introduction

Graph product structure theory describes complicated graphs as sub-
graphs of strong products(1) of simpler building blocks, which typically
have bounded treewidth(2) . For example, Dujmović, Joret, Micek, Morin,

Keywords: graph, planar graph, product structure, power, blocking partition, surface,
minor.
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(1) The strong product of graphs A and B, denoted by A ⊠ B, is the graph with vertex-
set V (A) × V (B), where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if
v = w and xy ∈ E(B), or x = y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).
(2) Let tw(H) denote the treewidth of a graph H (defined in Section 2).
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Ueckerdt and Wood [16] proved the following product structure theorem
for planar graphs, where a graph H is contained in a graph G if H is
isomorphic to a subgraph of G.

Theorem 1.1 ([16]). — Every planar graph is contained in H ⊠P ⊠K3
for some planar graph H with tw(H) ⩽ 3 and for some path P .

This result has been the key to solving several long-standing open prob-
lems about queue layouts [16], nonrepetitive colourings [13], centred colour-
ings [5], adjacency labelling [21, 12], twin-width [2, 30, 29], vertex rank-
ing [3], and box dimension [19]. Theorem 1.1 has been extended in various
ways for graphs of bounded Euler genus [16, 9, 30], graphs excluding an
apex minor [16, 28, 14], graphs excluding an arbitrary minor [16, 28, 4],
graphs of bounded tree-width [4, 14], graphs of bounded path-width [15],
and for various non-minor-closed classes [18, 26].

Many of these results show that for a particular graph class G there are
integers t, c such that every graph in G is contained in H ⊠ P ⊠ Kc for
some graph H with treewidth t and for some path P . Here the primary
goal is to minimise t, where minimising c is a secondary goal. This paper
proves product structure theorems of this form for powers of planar graphs
and for various beyond planar graph classes. The distinguishing feature of
our results is that tw(H) is bounded by an absolute constant, instead of
depending on a parameter defining G. This is important because in several
applications of such product structure theorems, the main dependency is
on tw(H); see Section 1.3 for an example.

First consider powers of planar graphs. For k ∈ N, the k-power of a graph
G, denoted Gk, is the graph with vertex-set V (G), where vw ∈ E(Gk) if
and only if distG(v, w) ∈ {1, . . . , k}. Dujmović, Morin and Wood [18] proved
that for every planar graph G of maximum degree ∆, the k-power Gk is
contained in H⊠P⊠K6∆k(k4+3k2) for some graph H with tw(H) ⩽

(
k+3

3
)
−1

and some path P . Dependence on ∆ is unavoidable since, for example, if G

is the complete (∆ − 1)-ary tree of height k, then G2k is a complete graph
on roughly (∆ − 1)k vertices. Ossona de Mendez [32] asked whether this
bound on tw(H) could be made independent of k. In particular:

Question 1.2 ([32]). — Is there a constant t and a function f such
that for every planar graph G and k ∈ N, the k-power Gk is contained in
H ⊠ P ⊠ Kf(k,∆(G)) for some graph H with tw(H) ⩽ t and for some path
P?

We resolve this question, in the following strong sense. For integers k, d ⩾
1 and a graph G, let Gk

d be the graph with vertex-set V (G) where vw ∈
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E(Gk
d) whenever there is a vw-path P in G of length at most k such that

every internal vertex of P has degree at most d in G. The following theorem
answers Question 1.2 in the affirmative, since Gk = Gk

∆(G).

Theorem 1.3. — There is a function f such that for every planar graph
G and for any integers k, d ⩾ 1, the graph Gk

d is contained in H⊠P⊠Kf(k,d)
for some graph H with tw(H) ⩽ 15 288 899 and for some path P .

We chose to simplify the proof instead of optimising the constant upper
bound on tw(H) in Theorem 1.3 and in our other results.

Theorem 1.3 is in fact a corollary of a more general result expressed in
terms of shallow minors.

1.1. Shallow Minors and Beyond Planar Graphs

Let G and H be graphs and let r, s ⩾ 0 be integers. H is a minor of
G if a graph isomorphic to H can be obtained from G by vertex deletion,
edge deletion, and edge contraction. A class G of graphs is minor-closed if
for every G ∈ G every minor of G is in G. A model (Bx : x ∈ V (H)) of H

in G is a collection of vertex-disjoint connected subgraphs in G such that
Bx and By are adjacent in G for every edge xy ∈ E(H). Clearly H is a
minor of G if and only if G contains a model of H. If there exists a model
of H in G such that Bx has radius at most r for all x ∈ V (H), then H

is an r-shallow minor of G. A rooted model ((Bx, vx) : x ∈ V (H)) of H is
a model of H where each Bx has a corresponding root vx ∈ V (Bx). If for
every x ∈ V (H) and for every u ∈ V (Bx) \ {vx}, we have distBx

(vx, u) ⩽ r

and degBx
(u) ⩽ s, then ((Bx, vx) : x ∈ V (H)) is an (r, s)-shallow model

and H is an (r, s)-shallow minor of G. Clearly, if H is an r-shallow minor
of G, then H is an (r, ∆(G))-shallow minor of G. However, these definitions
do not assume ∆(G) is bounded, since each vertex vx may have unbounded
degree in Bx and each vertex u ∈ V (Bx) may have unbounded degree in G.

Building on the work of Dujmović et al. [18], Hickingbotham and Wood
[26] showed that shallow minors inherit product structure.

Theorem 1.4 ([26]). — If a graph G is an r-shallow minor of H⊠P⊠Kc

where tw(H) ⩽ t, then G is contained in J ⊠P ⊠Kc(2r+1)2 for some graph
J with tw(J) ⩽

(2r+1+t
t

)
− 1.

Our main contribution is the following product structure theorem for
(r, s)-shallow minors of planar graphs, where J has treewidth bounded by
an absolute constant.
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Theorem 1.5. — There is a function f such that for every planar graph
G and for every (r, s)-shallow minor H of G ⊠ Kd, H is contained in J ⊠
P ⊠ Kf(d,r,s) for some graph J with tw(J) ⩽ 15 288 899 and for some path
P .

Theorem 1.5 is useful since, as observed by Hickingbotham and Wood
[26], many non-minor-closed graph classes can be described as shallow mi-
nors of a strong product of a planar graph with a small complete graph.
For example, for any graph G with maximum degree ∆, Hickingbotham
and Wood [26] observed that Gk is a ⌊ k

2 ⌋-shallow minor of G ⊠ K∆⌊k/2⌋+1 .
The proof is readily adapted(3) to show that Gk

d is a (⌊ k
2 ⌋, d)-shallow minor

of G ⊠ Kd⌊k/2⌋+1 . Thus Theorem 1.5 implies Theorem 1.3.
Theorem 1.5 can also be applied to several well-studied beyond planar

graph classes, which we now introduce. See [6, 27] for surveys on beyond
planarity.

A graph G is k-planar if G has a drawing in the plane in which each edge
is involved in at most k crossings, where no three edges cross at a single
point; such graphs are widely studied, see [35, 18, 11, 17] for example.
Dujmović et al. [18] proved that every k-planar graph is contained in H ⊠
P ⊠ K18k2+48k+30 for some graph H of treewidth

(
k+4

3
)

− 1 and for some
path P . Dujmović et al. [18] asked whether this bound on tw(H) could be
made independent of k. In particular:

Question 1.6 ([18]). — Is there a constant t and a function f such that
every k-planar graph G is contained in H ⊠ P ⊠ Kf(k) for some graph H

with tw(H) ⩽ t?

Theorem 1.5 resolves this question.

Corollary 1.7. — There is a function f such that every k-planar
graph G is contained in H ⊠ P ⊠ Kf(k) for some graph H with tw(H) ⩽
15 288 899.

(3) Let D be the set of vertices with degree at most d in G. For each vertex v ∈ V (G),
let B′

v be the subgraph of G induced by the set of vertices x ∈ V (G) for which there is
a vx-path P in G of length at most ⌊ k

2 ⌋ such that V (P − v) ⊆ D. So the radius of B′
v is

at most ⌊ k
2 ⌋ and there is an edge between V (B′

u) and V (B′
v) in G for each uv ∈ E(Gk).

Furthermore, |{v ∈ V (G) : x ∈ V (B′
v)}| ⩽ d0+· · ·+d⌊k/2⌋ ⩽ d⌊k/2⌋+1 for each x ∈ V (G).

So an arbitrary injective map from {v ∈ V (G) : x ∈ V (B′
v)} to V (Kd⌊k/2⌋+1 ) for each

vertex x ∈ V (G) defines a subgraph Bv of G⊠Kd⌊k/2⌋+1 such that the projection of Bv

onto G is B′
v and V (Bv) ∩ V (Bu) = ∅ for all distinct u, v ∈ V (G). So (Bv : v ∈ V (Gk

d))
defines a model of Gk

d in G ⊠ Kd⌊k/2⌋+1 where each Bv has radius at most ⌊ k
2 ⌋, as

required. By construction, Gk
d is in fact a (⌊ k

2 ⌋, d)-shallow minor of G ⊠ Kd⌊k/2⌋+1 .
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Proof. — Hickingbotham and Wood [26] observed that G is a ⌈ k
2 ⌉-shallow

minor of H ⊠K2, where H is the planar graph obtained from G by adding
a dummy vertex at each crossing point. A close inspection of their proof
reveals that each branch set in the model of G in H ⊠ K2 is a subdivided
star rooted at the high degree vertex. So G is a (⌈ k

2 ⌉, 2)-shallow minor of
H ⊠ K2. The claim then follows from Theorem 1.5. □

A string graph is the intersection graph of a set of curves in the plane
with no three curves meeting at a single point. Such graphs are widely
studied; see [22, 31, 36, 39, 23] for example. For an integer δ ⩾ 1, if each
curve is involved in at most δ intersections with other curves, then the
corresponding string graph is called a δ-string graph.

Corollary 1.8. — There is a function f such that every δ-string graph
G is contained in J ⊠P ⊠Kf(δ) for some graph J with tw(J) ⩽ 15 288 899
and for some path P .

Proof. — Hickingbotham and Wood [26] observed that G is a ⌊ δ
2 ⌋-shallow

minor of H⊠K2, where H is the planar graph obtained by adding a dummy
vertex at each intersection point of two curves (and possibly adding iso-
lated vertices). A close inspection of their proof reveals that each branch
set of the model of G in H ⊠K2 is a path. So G is a (⌊ δ

2 ⌋, 2)-shallow minor
of H ⊠ K2. The claim then follows from Theorem 1.5. □

The following graph class was introduced by Angelini, Bekos, Kaufmann,
Kindermann and Schneck [1]. A fan-bundling of a graph G is an indexed set
E = (Ev : v ∈ V (G)) where Ev is a partition of the set of edges in G incident
to v. Each element of Ev is called a fan-bundle. For a fan-bundling E of G,
let GE be the graph whose vertices are the vertices of G and the bundles of
E , where vB is an edge of GE whenever v ∈ V (G) and B ∈ Ev, and B1B2 is
an edge of GE whenever vw ∈ E(G) and vw ∈ B1 ∈ Ev and vw ∈ B2 ∈ Ew.
A graph G is k-fan-bundle planar if for some fan-bundling E of G, the
graph GE has a drawing in the plane such that each edge B1B2 ∈ E(GE)
is in no crossings, and each edge vB ∈ E(GE) is in at most k crossings.

Corollary 1.9. — There is a function f such that every k-fan-bundle
planar graph G is contained in J ⊠ P ⊠ Kf(k) for some graph J with
tw(J) ⩽ 15 288 899 and for some path P .

Proof. — Hickingbotham and Wood [26] showed that G is a (k + 1)-
shallow minor of H ⊠ K2 for some planar graph H. A close inspection of
their proof reveals that each branch set of the model of G in H ⊠ K2 is a
rooted subdivided star. So G is a (k + 1, 2)-shallow minor of H ⊠ K2. The
claim then follows from Theorem 1.5. □
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1.2. Other Surfaces

We generalise all of the above results for graphs embeddable on any
fixed surface as follows. The Euler genus of a surface with h handles and c

cross-caps is 2h + c. The Euler genus of a graph G is the minimum integer
g ⩾ 0 such that there is an embedding of G in a surface of Euler genus g;
see [33] for background about graph embeddings in surfaces. Theorem 1.5
generalises as follows.

Theorem 1.10. — There is a function f such that for every graph G

of Euler genus g, every (r, s)-shallow minor H of G ⊠ Kd is contained in
J ⊠ P ⊠ Kf(d,r,s,g) for some graph J with tw(J) ⩽ 963 922 179.

Theorem 1.3 generalises as follows. The proof is directly analogous to the
proof of Theorem 1.3, using Theorem 1.10 instead of Theorem 1.5.

Corollary 1.11. — There is a function f such that for every graph G

of Euler genus g and for any integers k, d ⩾ 1, the graph Gk
d is contained

in H ⊠ P ⊠ Kf(d,g,k) for some graph H with tw(H) ⩽ 963 922 179 and for
some path P .

We generalise Corollary 1.7 as follows, where a graph G is (g, k)-planar if
G has a drawing in a surface of Euler genus g in which each edge is involved
in at most k crossings, where no three edges cross at a single point. Such
graphs are widely studied [24, 11, 17, 18]. Dujmović et al. [18] proved that
every (g, k)-planar graph is contained in H⊠P ⊠Kmax{2g,3}(6k2+16k+10), for
some graph H of treewidth

(
k+4

3
)

−1 and for some path P . We improve the
treewidth bound to an absolute constant. The proof is directly analogous
to the proof of Corollary 1.7.

Corollary 1.12. — There is a function f such that every (g, k)-planar
graph G is contained in H ⊠ P ⊠ Kf(g,k) for some graph H with tw(H) ⩽
963 922 179.

We generalise Corollary 1.8 as follows, where a (g, δ)-string graph is the
intersection graph of a set of curves in a surface of Euler genus g, such
that no three curves meet at a single point, and each curve is involved in
at most δ intersections with other curves. The proof of Corollary 1.13 is
directly analogous to the proof of Corollary 1.8.

Corollary 1.13. — There is a function f such that every (g, δ)-string
graph G is contained in J ⊠ P ⊠ Kf(δ) for some graph J with tw(J) ⩽
963 922 179 and for some path P .
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We generalise Corollary 1.9 as follows, where a graph G is (g, k)-fan-
bundle planar if for some fan-bundling E of G, the graph GE has a drawing
in a surface of Euler genus g such that each edge B1B2 ∈ E(GE) is in no
crossings, and each edge vB ∈ E(GE) is in at most k crossings. The proof
of Corollary 1.14 is directly analogous to the proof of Corollary 1.9.

Corollary 1.14. — There is a function f such that every (g, k)-fan-
bundle planar graph G is contained in J ⊠P ⊠Kf(k) for some graph J with
tw(J) ⩽ 963 922 179 and for some path P .

1.3. Application: Centred Colourings

Nešetřil and Ossona de Mendez [34] introduced the following definition.
For an integer p ⩾ 1, a vertex colouring ϕ of a graph G is p-centred if, for
every connected subgraph X ⊆ G, |{ϕ(v) : v ∈ V (X)}| > p or there exists
some v ∈ V (X) such that ϕ(v) ̸= ϕ(w) for every w ∈ V (X) \ {v}. For
an integer p ⩾ 1, the p-centred chromatic number of a graph G, denoted
by χp(G), is the minimum integer c ⩾ 0 such that G has a p-centred c-
colouring. Centred colourings are important within graph sparsity theory
as they characterise graph classes with bounded expansion [34].

Dębski, Felsner, Micek and Schröder [5] established that χp(G ⊠ H) ⩽
χp(G)χ(Hp) for all graphs G and H. Pilipczuk and Siebertz [37, Lemma 15]
showed that χp(G) ⩽

(
p+t

t

)
for every graph G with treewidth at most t. It

follows that if G ⊆ H ⊠ P ⊠ Kℓ and tw(H) ⩽ t, then

(1.1) χp(G) ⩽ ℓ(p + 1)χp(H) ⩽ ℓ(p + 1)
(

p+t
t

)
∈ Oℓ(pt+1).

Thus, Theorem 1.3 and Corollarys 1.7 and 1.9 imply:
• for every planar graph G and any integers k, d ⩾ 1, χp(Gk

d) ∈
Ok,d(p15 288 900);

• for every k-planar graph G, χp(G) ∈ Ok(p15 288 900);
• for every k-fan-bundle graph G, χp(G) ∈ Ok(p15 288 900).

Similarly, Corollarys 1.11, 1.12 and 1.14 imply:
• for every graph G of Euler genus g and for any integers k, d ⩾ 1,

χp(Gk
d) ∈ Og,k,d(p963 922 180);

• for every (g, k)-planar graph G, χp(G) ∈ Og,k(p963 922 180);
• for every (g, k)-fan-bundle graph G, χp(G) ∈ Og,k(p963 922 180).

For k-planar or (g, k)-planar graphs G, the best previously known bound
was χp(G) ∈ Og,k(p(k+4

3 )), due to Dujmović et al. [18]. The above results
significantly improve this bound (for large k).
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1.4. Paper Outline

It remains to prove Theorems 1.5 and 1.10. The proofs of these results
depend on the notion of a ‘blocking partition’, which we believe is of inde-
pendent interest. Following a section of preliminary definitions, Section 3
introduces and states our main results about blocking partitions: Theo-
rem 3.1 for planar graphs and Theorem 3.2 for graphs of Euler genus g.
We then show how Theorems 3.1 and 3.2 imply Theorems 1.5 and 1.10.
Theorem 3.1 is the heart of the paper, and is proved in Sections 4–6. Theo-
rem 3.2 is then proved in Section 7 as a corollary of Theorem 3.1. Section 8
considers which graph classes admit blocking partitions of bounded width.
We show that bounded maximum degree is necessary but not sufficient,
and that bounded maximum degree and bounded treewidth are sufficient.
Section 9 concludes by introducing some natural open problems that arise
from this work.

2. Preliminaries

We consider simple, finite, undirected graphs G with vertex-set V (G)
and edge-set E(G). See [7] for graph-theoretic definitions not given here.
Let N := {1, 2, . . . } and N0 := {0, 1, . . . }. A graph class is a collection of
graphs closed under isomorphism.

We use the following notation for a graph G. For v ∈ V (G), let NG(v) :=
{w ∈ V (G) : vw ∈ E(G)} and NG[v] := NG(v) ∪ {v}. For S ⊆ V (G), let
NG(S) :=

⋃
v∈S NG(v) \ S.

The length of a path P is the number of edges in P . Given a graph G

and two subsets A, B ⊆ V (G), a path P in G is an A–B path if either P

consists of only one vertex x ∈ A ∩ B, or P has length at least 1, one end
of P belongs to A, the other belongs to B, and no inner vertex belongs to
A ∪ B. For vertices x, y ∈ V (G), an x–y path is an {x}–{y} path. For a
tree T and x, y ∈ V (T ), we denote the unique x–y path in T by xTy.

For two subsets U1, U2 ⊆ V (G), let distG(U1, U2) denote the distance
between U1 and U2 in G; that is, the length of a shortest U1–U2 path in
G (or +∞ if no such path exists). In this notation, the role of Ui can
be played by a vertex x, which is then interpreted as the singleton {x};
for example, we write distG(x, U) rather than distG({x}, U). Similarly, the
role of Ui can be played by an edge x1x2 ∈ E(G), which is then interpreted
as the set {x1, x2}, or by a set of edges M ⊆ E(G) which is interpreted
as

⋃
xy∈M {x, y}. A path P in a graph G is geodesic if it is a shortest
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path between its ends in G, which implies distP (x, y) = distG(x, y) for any
x, y ∈ V (P ).

In a plane embedding of a graph G, a face is a connected component
of R2 − G. We use closure and boundary in the topological sense. So the
closure of a face f is the union of f and the boundary of f .

A tree-decomposition of a graph G is a collection W = (Wx : x ∈ V (T ))
of subsets of V (G) indexed by the nodes of a tree T such that (a) for every
edge vw ∈ E(G), there exists a node x ∈ V (T ) with v, w ∈ Wx; and (b) for
every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Wx} induces a non-empty
(connected) subtree of T . Each set Wx in W is called a bag. The width
of W is max{|Wx| : x ∈ V (T )} − 1. The treewidth tw(G) of a graph G is the
minimum width of a tree-decomposition of G. Treewidth is the standard
measure of how similar a graph is to a tree. Indeed, a connected graph has
treewidth at most 1 if and only if it is a tree.

Let G and H be graphs. A partition of G is a collection P of sets of
vertices in G such that each vertex of G is in exactly one element of P.
Each element of P is called a part. Empty parts are allowed. The width of
P is the maximum number of vertices in a part. The quotient of P (with
respect to G) is the graph, denoted by G/P, whose vertices are the non-
empty parts of P, where distinct non-empty parts A, B ∈ P are adjacent
in G/P if and only if some vertex in A is adjacent in G to some vertex in
B. The quotient is defined analogously when P is a set of vertex-disjoint
subgraphs of G whose vertex-sets partition G. Then the vertices of G/P are
subgraphs of G instead of sets of vertices. An H-partition of G is a partition
P of G such that G/P is contained in H. The following observation connects
partitions and products.

Observation 2.1 ([16]). — For all graphs G and H and any integer
p ⩾ 1, G is contained in H ⊠ Kp if and only if G has an H-partition with
width at most p.

A partition of a graph G is connected if the subgraph induced by each
part is connected. In this case, the quotient is the minor of G obtained by
contracting each part into a single vertex.

A partition P of G is chordal if P is connected and G/P is chordal.
A tree-partition is a T -partition for some tree T . Such a T -partition is

rooted if T is rooted.
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Let G and H be graphs and let Z be a subgraph of G⊠H. The projection
of Z onto G is the subgraph Z ′ of G where

V (Z ′) := {v ∈ V (G) : (v, x) ∈ V (Z) for some x ∈ V (H)} and
E(Z ′) := {uv ∈ E(G) : (u, x)(v, y) ∈ E(Z) for some x, y ∈ V (H)}.

A bfs-layering of a connected graph G is an ordered partition (V0, V1, . . . )
of V (G) where V0 = {r} for some vertex r ∈ V (G) and Vi = {v ∈ V (G) :
distG(v, r) = i} for each i ⩾ 1. A path P is vertical with respect to
(V0, V1, . . . ) if |V (P ) ∩ Vi| ⩽ 1 for all i ⩾ 0. Let T be a spanning tree
of G, where for each non-root vertex v ∈ Vi there is a unique edge vw in T

for some w ∈ Vi−1. Then T is called a bfs-spanning tree of G.

3. Blocking Partitions

Let G be a graph and R be a connected partition of V (G). A path P

in G is R-clean if |V (P ) ∩ V | ⩽ 1 for each part V ∈ R. We say that R is
ℓ-blocking if every R-clean path in G has length at most ℓ, as illustrated in
Figure 3.1.

Figure 3.1. A 3-blocking partition R of width 9. The red path is a
longest R-clean path.

The following result is the heart of this paper.

Theorem 3.1. — Every planar graph G with maximum degree ∆ has
a 222-blocking partition R with width at most f(∆) := 10∆80(3612 ∆452 +
900).

Theorem 3.1 is proved in Sections 4–6. Section 7 proves the following
extension of Theorem 3.1.
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Theorem 3.2. — Every graph G with Euler genus g and maximum
degree ∆ has a 894-blocking partition with width at most f(∆, g) :=
max{10∆80(3612∆452 + 900), 8950g2 + 1796g}.

To show that Theorems 3.1 and 3.2 imply our main results (Theorems 1.5
and 1.10), we use the following lemma.

Lemma 3.3. — Let G be a minor-closed class such that for some function
f and integers ℓ, t, c ⩾ 1,

• every graph G ∈ G has an ℓ-blocking partition R with width at
most f(∆(G));

• every graph G ∈ G is contained in H ⊠ P ⊠ Kc for some graph H

with tw(H) ⩽ t and for some path P .
Then there is a function g such that for any integers r ⩾ 0 and d, s ⩾ 1,
for every graph G ∈ G, every (r, s)-shallow minor of G ⊠ Kd is contained
in J ⊠P ⊠Kg(d,r,s,ℓ,c) for some graph J with tw(J) ⩽

(2ℓ+5+t
t

)
− 1 and for

some path P .

For planar graphs, Lemma 3.3 is applicable with ℓ = 222 by Theorem 3.1
and with t = c = 3 by Theorem 1.1. Lemma 3.3 thus proves Theorem 1.5
since tw(J) ⩽

(2ℓ+5+t
t

)
− 1 =

(2·222+5+3
3

)
− 1 = 15 288 899. For graphs

of Euler genus g, Lemma 3.3 is applicable with ℓ = 894 by Theorem 3.2
and with t = 3 and c = max{2g, 3} by a result of Distel, Hickingbotham,
Huynh and Wood [9]. Lemma 3.3 thus proves Theorem 1.10 since tw(J) ⩽(2ℓ+5+t

t

)
− 1 =

(2·894+5+3
3

)
− 1 = 963 922 179.

We now work towards proving Lemma 3.3.

Lemma 3.4. — Let G be a minor-closed class such that, for some func-
tion f and integer ℓ ⩾ 1, every graph G0 ∈ G has an ℓ-blocking partition
R with width at most f(∆(G0)). Then for any integers r > ℓ + 2 and
s, d ⩾ 1, for every graph G ∈ G, every (r, s)-shallow minor H of G ⊠ Kd is
an (r − 1, s′)-shallow minor of G′ ⊠ Kd′ , where G′ is a minor of G and is
thus in G, and s′ = (ds)r and d′ = d · f(ds).

Proof. — Let ((Bx, vx) : x ∈ V (H)) be an (r, s)-shallow model of H in
G ⊠ Kd. For each x ∈ V (H), let B′

x and v′
x be the projections of Bx and

vx, respectively, onto G. Observe that for each x ∈ V (H), the maximum
degree of each Bx − vx is at most s and each vertex in B′

x is at distance
at most r from v′

x. Let G0 :=
⋃

(B′
x − v′

x : x ∈ V (H)), which is a subgraph
of G and therefore in G. Since every vertex in G0 has at most d vertices
mapped to it, the maximum degree of G0 is at most ds. By assumption,
there is an ℓ-blocking partition R of G0 with width at most f(ds).
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Let R′ := R ∪ {{v} : v ∈ V (G) \ V (G0)}, which is a partition of G.
Define G′ := G/R′. Since R′ is a connected partition, G′ is a minor of G

and is therefore in G. The width of R′ is at most f(ds), so G is contained
in G′ ⊠ Kf(ds) by Observation 2.1. By slightly abusing the notation, we
identify the graph G with the isomorphic subgraph of G′ ⊠ Kf(ds). So the
graphs B′

x are subgraphs of G′ ⊠ Kf(ds), and each vertex of G′ ⊠ Kf(ds)
belongs to at most d graphs B′

x.
For each x ∈ V (H), let T ′

x be a bfs-spanning tree of B′
x rooted at v′

x.
Hence, the maximum degree of T ′

x − v′
x is at most ds and each vertex is at

distance at most r from the root v′
x in T ′

x. So each component of T ′
x − v′

x

has at most (ds)0 + . . . + (ds)r−1 < (ds)r vertices’. Let T ′
x denote the graph

obtained from T ′
x by adding each edge of G′ ⊠Kf(ds) that joins a vertex of

T ′
x to one of its descendants. Then T ′

x − v′
x has maximum degree at most

(ds)r.
Below we show that the maximum degree of T ′

x − v′
x is at most s′ and

each vertex in T ′
x is at distance at most r − 1 from v′

x. This implies that H

is an (r − 1, s′)-shallow minor of G′ ⊠ Kf(ds) ⊠ Kd, where an appropriate
model can be defined by choosing for each v ∈ V (G′ ⊠Kf(ds)) an injective
map from {x ∈ V (H) : v ∈ V (B′

x)} to V (Kd). Since G′ ⊠ Kf(ds) ⊠ Kd is
isomorphic to G′ ⊠ Kd′ , the lemma will follow.

First we estimate the maximum degree of T ′
x − v′

x. Consider a vertex
v ∈ V (T ′

x) at distance i ⩾ 1 from the root v′
x in T ′

x. Then, for each j ∈
{1, . . . , i − 1}, the vertex v has only one ancestor at distance j from v′

x

in T ′
x. Since the maximum degree of T ′

x − v′
x is at most ds, for each j ∈

{i+1, . . . , r}, there are at most (ds)j−i descendants of v at distance j from
v′

x. Therefore, v has at most (ds)j−1 neighbours in T ′
x − v′

x which are at
distance j from v′

x in T ′
x. Hence, the degree of v in T ′

x − v′
x is at most

(ds)0 + . . . + (ds)r−1 < (ds)r, so the maximum degree of T ′
x − v′

x is at most
(ds)r.

It remains to show that in each T ′
x, every vertex is at distance at most

r − 1 from v′
x. Suppose to the contrary that some vertex u is at distance at

least r from v′
x in T ′

x. Since T ′
x ⊆ T ′

x, and in T ′
x every vertex is at distance

at most r from v′
x, the vertex u must be at distance exactly r from v′

x in
T ′

x and T ′
x. Let P = (u0, . . . , ur) be the unique path between v′

x and u in
T ′

x where u0 = v′
x and ur = u. Let P ′ = (x1, . . . , xr) be the projection of P

onto G0. Then P ′ is a path in G0 with length r−1 ⩾ ℓ+1, so it contains two
vertices xα and xβ with 1 ⩽ α < β that belong to the same part in R. Thus
the projection of uα and uβ (in G′ ⊠Kf(ds)) are the same vertex in G′ and
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so, by the definition of the strong product, uβuα−1 ∈ E(G′⊠Kf(ds)). Hence
the distance between v′

x and u in T ′
x is less than r, a contradiction. □

We prove the next lemma by iteratively applying Lemma 3.4.

Lemma 3.5. — Let G be a minor-closed class such that, for some func-
tion f and integer ℓ ⩾ 1, every graph G ∈ G has an ℓ-blocking partition
with width at most f(∆(G)). Then there is a function h such that for any
integers r ⩾ 0 and s, d ⩾ 1, for every graph G ∈ G, every (r, s)-shallow
minor H of G ⊠ Kd is an (ℓ + 2)-shallow minor of Q ⊠ Kh(d,r,s,ℓ) for some
minor Q of G.

Proof. — If r ⩽ ℓ+2 then H is an (ℓ+2)-shallow minor of Q⊠Kh(d,r,s,ℓ),
where Q = G and h(d, r, s, ℓ) = d, and we are done. Now assume that
r > ℓ + 2. Thus r − ℓ − 2 ⩾ 1. Let d0 := d and s0 := s. Iteratively applying
Lemma 3.4, we obtain a sequence G1, G2, . . . , Gr−ℓ−2 of minors of G, such
that for each i ∈ {1, . . . , r − ℓ−2}, H is an (r − i, si)-shallow minor of Gi ⊠
Kdi , where si = (di−1si−1)r−i+1 and di = di−1 · f(di−1si−1). In particular
(with i = r − ℓ − 2), H is an (ℓ + 2)-shallow minor of Gr−ℓ−2 ⊠ Kdr+ℓ−2 .
The result follows with Q := Gr−ℓ−2 and h(d, r, s, ℓ) := dr−ℓ−2. □

Proof of Lemma 3.3. — Let G ∈ G and let G′ be an (r, s)-shallow minor
of G⊠Kd. By Lemma 3.5, G′ is an (ℓ + 2)-shallow minor of Q⊠Kh(d,r,s,ℓ)
for some minor Q of G. Thus Q ∈ G. By assumption, Q is contained in
H ⊠ P ⊠ Kc for some graph H with tw(H) ⩽ t. Hence G′ is an (ℓ + 2)-
shallow minor of H ⊠ P ⊠ Kc h(d,r,s,ℓ). By Theorem 1.4, G′ is contained in
J⊠P ⊠Kc(2(ℓ+2)+1)2·g(d,r,s,ℓ) for some graph J with tw(J) ⩽

(2(ℓ+2)+1+t
t

)
−

1. The result follows with g(d, r, s, ℓ, c) := c(2(ℓ + 2) + 1)2 · h(d, r, s, ℓ). □

4. The Chordal Partition

Our focus now is the proof of Theorem 3.1, which is inspired by the
construction of a chordal partition of a planar triangulation by van den
Heuvel, Ossona de Mendez, Quiroz, Rabinovich and Siebertz [25]. They
showed that every planar triangulation G has a partition P into paths
P1, . . . , Pn, such that for each i ∈ {1, . . . , n − 1}, the path Pi+1 is geodesic
in G − (V (P1) ∪ · · · ∪ V (Pi)), Pi+1 is adjacent to at most two of the paths
P1, . . . , Pi, and if Pi+1 is adjacent to Pa and Pb with 1 ⩽ a < b ⩽ i, then
Pa is adjacent to Pb. Then the quotient G/P is chordal with treewidth 2.

Our ℓ-blocking partition of a planar graph G will be obtained from a
partition of G into subtrees T1, . . . , Tn with similar properties: for each
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i ∈ {1, . . . , n − 1}, the tree Ti+1 is adjacent to at most two of the trees
T1, . . . , Ti, and if Ti+1 is adjacent to two of those trees, then they are
adjacent to each other. The final partition is then obtained by appropriately
breaking each V (Ti) into connected parts of bounded size.

Fix a planar graph G of maximum degree ∆ and any planar embedding
of G. This section constructs a 6-blocking(4) chordal partition T of G.
Later sections refine this partition into a connected (non-chordal) partition
R with width bounded in terms of ∆, and show that R is 222-blocking,
which will prove Theorem 3.1. Since Theorem 3.1 is trivial when ∆ ⩽ 2,
we assume that ∆ ⩾ 3.

Our construction of the 6-blocking chordal partition is parameterised by
a positive integer τ . Ultimately, we will fix τ = 37, but it will be easier to
visualise the construction for smaller values of τ .

We use the notion of F -bridges, as illustrated in Figure 4.1. For a sub-
graph F of G, an F -bridge is either a length-1 path in G that is edge-disjoint
from F and is between two vertices in V (F ) (such an F -bridge is trivial),
or a graph obtained from a component C of G−V (F ) by adding all vertices
in NG(V (C)) and all edges of G between V (C) and NG(V (C)) (such an
F -bridge is non-trivial). Observe that each edge of G outside F belongs
to exactly one F -bridge. In an F -bridge B, the set V (B) ∩ V (F ) is the
attachment-set, and its elements are the attachment-vertices of B. Hence,
if B is non-trivial with attachment-set A, then B − A is a component of
G − V (F ).

We will inductively define a sequence of vertex-disjoint trees T1, . . . , Tm

whose vertex-sets will form the chordal partition of G. For each j ∈
{0, . . . , m}, we denote the forest

⋃
i<j Ti by Fj (in particular, F0 is empty).

For each j ∈ {0, . . . , m}, we maintain the following invariant.

Invariant. — For every non-trivial Fj-bridge B:
(i) B has attachment-vertices on at most two components of Fj ;
(ii) for every component Ti of Fj that contains an attachment-vertex

of B, the tree Ti is contained in the closure of the outer-face of B,
and the attachment-vertices of B in V (Ti) are leaves of Ti;

(iii) if B has attachment-vertices on two distinct components Ti and Ti′

of Fj , then Ti is contained in the closure of the outer-face of Ti′ ∪B,
and Ti′ is contained in the closure of the outer-face of Ti ∪ B.

This invariant implies the following.

(4) Actually, the partition is 4-blocking, but for simplicity we prove a weaker bound.
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Figure 4.1. A graph G with a distinguished sub-forest F with two
components (black). There are four trivial F -bridges (green) and four
non-trivial F -bridges (each of them is obtained from a component C

of G − V (F ) (gray) by adding all blue edges incident with a vertex of
C (and their ends outside C))

Claim 1. — Suppose that the invariant is satisfied for some j ∈
{0, . . . , m}, and let B be a nontrivial Fj-bridge with at least one
attachment-vertex. Let J be the union of B and all components Ti of Fj

that contain an attachment-vertex of B. Then, for each component Ti con-
tained in J , at least one and at most two attachment-vertices of B on Ti

are on the boundary of the outer-face of J .

Proof. — By invariant (i), B has attachment-vertices on at most one
component of Fj distinct from Ti. By invariant (ii), Ti is contained in
the closure of the outer-face of B. Moreover, by invariant (iii), if B has
an attachment-vertex on a tree Ti′ distinct from Ti, then Ti is contained
in the closure of the outer-face of B ∪ Ti′ . Therefore, in the facial walk
along the outer-face of J , the vertices and edges that belong to Ti appear
consecutively, forming a (possibly closed) sub-walk W . By invariant (ii),
the attachment-vertices of B in V (Ti) are leaves of Ti, so only the terminal
vertices of W are attachments of B in V (Ti) which lie on the boundary of
the outer-face of J . At most two vertices are terminal vertices of W , so the
claim holds. □
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For j = 0, the invariant is satisfied because F0 is empty, so the F0-bridges
have no attachment-vertices.

Together with each tree Tj we will define a tuple (Bj , Aj , Xj , Aout
j ,

Dj , T 0
j ), where T 0

j ⊆ Tj ⊆ Bj ⊆ G, Aout
j ⊆ Aj ⊆ V (Fj−1), Xj ⊆

{1, . . . , j − 1}, and Dj ⊆ V (T 0
j ).

Let j ⩾ 1 be an integer, and suppose that we have already defined the
trees T1, . . . , Tj−1, and thus the forest Fj−1 is defined. If V (Fj−1) = V (G),
then terminate the construction with a sequence of length j −1. Otherwise,
let Bj be any non-trivial Fj−1-bridge. Let Aj denote the attachment-set of
Bj , and let Xj denote the set of all i ∈ {1, . . . , j − 1} such that Bj has an
attachment-vertex in V (Ti). By invariant (i), we have |Xj | ⩽ 2.

Let J := Bj ∪
⋃

i∈Xj
Ti. Define Aout

j to be the set of attachment-vertices
x ∈ Aj that lie on the boundary of the outer-face of J . By Claim 1, the set
Aout

j contains one or two vertices of each Ti with i ∈ Xj , so |Aout
j | ⩽ 4 and

if Aj ̸= ∅, then Aout
j ̸= ∅.

Define a non-empty subset Dj ⊆ V (Bj − Aj) as follows. If Aj = ∅, then
let Dj be a set consisting of one arbitrary vertex on the boundary of the
outer-face of Bj . If Aj ̸= ∅ (and thus Aout

j ̸= ∅), then let Dj denote the set
of all vertices x ∈ V (Bj − Aj) such that distG(x, Aout

j ) ⩽ τ . In Bj , every
vertex from Aout

j has a neighbour in V (Bj − Aj) and such a neighbour
belongs to Dj (recall that τ ⩾ 1). Hence, Dj is non-empty.

Let T 0
j be a tree in Bj − Aj that contains all vertices in Dj and has the

smallest possible number of edges, and let Tj be a tree obtained from T 0
j

by attaching each vertex x ∈ NBj−Aj
(V (T 0

j )) with any edge of G between
x and V (T 0

j ). See Figure 4.2.
We now verify that for such Tj , the invariant is satisfied. Let B be a

non-trivial Fj-bridge. If B has no attachment-vertex on Tj , then B is an
Fj−1-bridge distinct from Bj , and the invariant is satisfied by induction.
Hence, we assume that B has an attachment-vertex on Tj . Since every
component of G − V (Fj) which is adjacent in G to Tj is a component of
(Bj − Aj) − V (Tj), the Fj-bridge B is contained in Bj . Note that every
attachment-vertex of B that is not on Tj lies on a tree Ti with i < j, and
thus, is an attachment-vertex of Bj .

Suppose first that Xj = ∅. Then B has all its attachment-vertices on Tj .
The only vertex x of Dj is on the boundary of the outer-face of Bj . The
tree Tj is a star with a centre at x and whose leaves are the neighbours
of x in G. Therefore B can intersect Tj only in its leaves, and Tj is in the
closure of the outer-face of B, so the invariant holds.
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Ti

Ti′

u

u′

v

v′

Figure 4.2. A possible situation in the construction of the tree Tj for
τ = 3, where Bj has attachment-vertices on the trees Ti and Ti′ . Here,
Aout

j = {u, v, u′, v′}, the vertices from Dj are red, and the tree Tj

consists of the red and black edges .

Now suppose that Xj ̸= ∅, and let i ∈ Xj . By induction, the tree Ti

intersects the boundary of the outer-face of J , and we can write the facial
walk along the outer-face of J as W = v0e0v1e1 · · · en−1vn where v0 = vn

and for some s ∈ {0, . . . , n − 1} we have V (W ) ∩ V (Ti) = {v0, . . . , vs}
and E(W ) ∩ E(Ti) = {e0, . . . , es−1}. We have Aout

j ∩ V (Ti) = {v0, vs}
(possibly v0 = vs). Each of the edges en−1 = v0vn−1 and es = vsvs+1 has
an end in V (Ti) but does not belong to Ti. Hence both of these edges are
edges of Bj , so {vn−1, vs+1} ⊆ V (Bj − Aj). Since {v0, vs} ⊆ Aout

j , we have
{vn−1, vs+1} ⊆ Dj ⊆ V (T 0

j ).
We now show that B has attachment-vertices on at most two components

of Fj . Every attachment-vertex of B that is not in V (Tj), is an attachment-
vertex of Bj . Hence, if Xj = {i}, then B can only have attachment-vertices
on Tj and Ti. Therefore, suppose that Xj = {i, i′} with i′ ̸= i. We need
to show that B has an attachment-vertex on at most one of the trees Ti

and Ti′ . By our invariant, Ti′ is in the closure of the outer-face of Ti ∪
B. Therefore, Ti′ intersects {vs+2, . . . , vn−2}. Since the vertices v0, . . . , vs

belong to Ti, the path vn−1T 0
j vs+1 separates the trees Ti and Ti′ in J . Since

T 0
j ⊆ Tj , every component of (Bj − Aj) − V (Tj) is adjacent to at most one

of the trees Ti and Ti′ . Since B is a non-trivial Fj-bridge contained in
Bj , this means that B has attachment-vertices in at most one of the trees
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Ti and Ti′ , as required. Hence, B has attachment-vertices on at most two
components of Fj .

Assume without loss of generality that every attachment-vertex of B that
does not lie on Tj belongs to Ti.

Next, we show that every attachment-vertex of B is a leaf of Ti or Tj .
Every attachment-vertex of B on Ti is an attachment-vertex of Bj , and
by induction, is a leaf of Ti. Since the tree Tj was obtained from T 0

j by
attaching all adjacent vertices in Bj − Aj as leaves, all attachment-vertices
of B on Tj belong to V (Tj) \ V (T 0

j ), and therefore are leaves of Tj .
Finally, we argue that the tree Ti is in the closure of the outer-face of

Tj ∪ B, and the tree Tj is in the closure of the outer-face of Ti ∪ B. This
will imply that the trees Ti and Tj are in the closure of the outer-face of
B, which will complete the proof of the invariant. By induction, the tree
Ti is in the closure of the outer-face of Bj . Since Tj ∪ B ⊆ Bj , the tree Ti

is in the closure of the outer-face of Tj ∪ B. The vertex vs+1 ∈ V (T 0
j ) is

on the boundary of the outer-face of J . Since T 0
j and Ti ∪ B are disjoint

subgraphs of J , the tree T 0
j is on the outer-face of Ti ∪ B. The tree Tj is

obtained from T 0
j by attaching leaves, so it is contained in the closure of

the outer-face of Ti ∪ B. This completes the proof of the invariant and the
inductive construction.

From now on, we assume that T = {T1, . . . , Tm} is a fixed partition ob-
tained by our construction for τ = 37, with a tuple (Bj , Aj , Xj , Aout

j , Dj , T 0
j )

associated to each tree Tj .
For later reference, we make explicit some implications of the inductive

construction.
Claim 2. — For each j ∈ {1, . . . , m}, if Xj = {i, i′} with i ̸= i′, then the

tree T 0
j separates the trees Ti and Ti′ in the graph Ti∪Ti′∪Bj . Consequently,

the tree T 0
j separates the sets Aj ∩ V (Ti) and Aj ∩ V (Ti′) in the graph Bj .

Claim 3. — For each j ∈ {1, . . . , m}, no non-trivial Fj-bridge has an
attachment-vertex on T 0

j .
Claim 4. — For any j ∈ {1, . . . , m} and i ∈ Xj , the graph Bj contains

an edge between Aout
j ∩ V (Ti) and Dj . In particular, Ti is adjacent to Tj in

G.
We will also use the following simple properties of our construction.
Claim 5. — For j ∈ {1, . . . , m}, an Fj-bridge B has an attachment-

vertex on Tj if and only if B ⊆ Bj .
Proof. — Suppose that B has an attachment-vertex on Tj . If B is trivial,

then it consists of one edge with an end in the component Bj − Aj of
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G − V (Fj−1), and hence B ⊆ Bj . If B is non-trivial, then it is obtained by
adding attachment-vertices to a component of G − V (Fj) adjacent to Tj .
That component is contained in Bj − Aj , so again B ⊆ Bj .

Now suppose that B ⊆ Bj . If B is trivial, then its two attachment-
vertices belong to Aj ∪ V (Tj). Since Aj is an independent set in Bj , at
least one attachment-vertex of B is on Tj . If B is non-trivial, then since
B ⊆ Bj , it is obtained from a component of (Bj −Aj)−V (Tj) by adding all
vertices adjacent to it as attachment-vertices. Since Bj − Aj is connected,
at least one of these attachment-vertices will lie on Tj . □

Claim 6. — For j ∈ {1, . . . , m}, every non-trivial Fj-bridge B is equal
to Bk for some k ∈ {j + 1, . . . , m}.

Proof. — The vertex-sets of the trees T1, . . . , Tm partition V (G), so there
exists the least k ∈ {j + 1, . . . , m} that contains a non-attachment-vertex
of B. Hence, B intersects Fk−1 only in its attachment-vertices, and they
all belong to Fj , so B is an Fk−1-bridge that intersects Tk, and therefore
B = Bk. □

Although we do not use this in our proof, we now show that T is a
chordal partition.

Claim 7. — T is a chordal partition with tw(G/T ) ⩽ 2.

Proof. — Clearly T is a connected partition since each part has a span-
ning subtree. Let j ∈ {1, . . . , m}. If Tj is adjacent in G to a tree Ti with
i < j, then, since Tj ⊆ Bj − Aj , the Fj−1-bridge Bj has an attachment-
vertex on Ti, that is, i ∈ Xj . Since |Xj | ⩽ 2, the tree Tj can be adjacent
to at most two of the trees T1, . . . , Tj−1. It remains to show that if Tj is
adjacent to two trees Ti and Ti′ with i < i′ < j, then Ti is adjacent to
Ti′ in G. Since Tj is adjacent to Ti′ , we have i′ ∈ Xj , and therefore, by
Claim 5, we have Bj ⊆ Bi′ . The attachment-vertices of Bj on Ti are thus
attachment-vertices of Bi′ , so i ∈ Xi′ . By Claim 4, Ti is adjacent to Ti′ . □

The following property of our chordal partition will play a key role in
the proof.

Claim 8. — Let j, k ∈ {1, . . . , m} be such that Bk is an Fj-bridge
contained in Bj , let B be a (possibly trivial) Fj-bridge contained in Bj

that is distinct from Bk and has an attachment-vertex in Aj , and let Q be
a V (B)–V (Bk) path in Bj − V (T 0

j ). Then the end of Q in V (Bk) belongs
to Aout

k .

Proof. — By Claim 5, each of the Fj-bridges B and Bk has an
attachment-vertex on Tj . The Fj-bridge B has attachment-vertices on at
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Bk B

Q

Ti

Tj
Bj

Figure 4.3. Illustration of Claim 8. The end of Q in Bk must belong
to Aout

k

most two components of Fj , so the attachment-vertices of B in Aj must
belong to one tree Ti with i < j. We show that every attachement-vertex
of Bk that does not lie on Tj belongs to Ti. By Claim 3, the non-trivial
Fj-bridge Bk is disjoint from T 0

j . Likewise, if B is non-trivial, then it is
disjoint from T 0

j . Otherwise B is trivial and it can have attachments on
T 0

j . Let B′ := B − (V (B) ∩ V (T 0
j )). Hence, B′ is a connected graph that

contains all attachment-vertices of B on Ti and an end of Q. The graph
Bk ∪ Q ∪ B′ is therefore a connected subgraph of Bj − V (T 0

j ) that inter-
sects Ti. Therefore, by Claim 2, the graph Bk ∪ Q ∪ B′ intersects Aj only
in vertices belonging to Ti, so indeed any attachment-vertices of Bk not on
Tj must lie on Ti. See Figure 4.3.

We claim that the only face of Ti ∪ Tj ∪ Bk whose boundary intersects
both Ti and Tj is the outer-face. By our invariant, this is true when Bk has
attachment-vertices in both Ti and Tj , so suppose that Bk has attachment-
vertices only on Tj . Then Ti ∪ Tj ∪ Bk has two components Ti and Tj ∪ Bk.
The graph Tj is in the closure of the outer-face of Bk, and the graph Ti is
in the closure of the outer-face of Bj . Since Tj ∪ Bk ⊆ Bj , this means that
Ti is on the outer-face of Tj ∪ Bk, and the only face of Ti ∪ Tj ∪ Bk whose
boundary intersects Ti and Tj is the outer-face. Therefore, B is contained
in the closure of the outer-face of Ti ∪ Tj ∪ Bk. By Claim 3, Bj is disjoint
from T 0

i . Since Q ⊆ Bj − V (T 0
j ), this means that Q is disjoint from T 0

i

and T 0
j , and thus Q can intersect the trees Ti and Tj only in their leaves.

Furthermore, Q intersects Bk only in one end, so the path Q belongs to the
closure of the outer-face of Ti ∪Tj ∪Bk together with B. Hence, the path Q

intersects Bk in a vertex on the boundary of the outer-face of Ti ∪ Tj ∪ Bk.
That vertex is an attachment-vertex of Bk in Aout

k . □
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The following claim, while not used in the main proof, provides helpful
intuition for the more complicated proof that follows. The proof of this
claim does not rely on the value of τ , and even works with τ = 1. Also,
the trees T 0

j do not need to minimise the number of edges for this proof to
work. These properties will be useful later, in the proof of Theorem 3.1.

Claim 9. — The partition T is 6-blocking.

Proof. — Consider a T -clean path P in G. We now show that the length
of P is at most 6. Let Ti be the tree that intersects P and has the smallest
i. Since P is T -clean, it intersects Ti in only one vertex, which splits P

into two edge-disjoint paths, each intersecting Ti only in one of its ends.
Therefore, it suffices to show that if Q = (x0, . . . , xp) is a T -clean path
such that V (Q) ∩ V (Fi) = {x0} ⊆ V (Ti), then p ⩽ 3.

Suppose towards a contradiction that p ⩾ 4. Since V (Q)∩V (Fi) = {x0},
the path Q is contained in a non-trivial Fi-bridge. By Claim 6, that Fi-
bridge is equal to Bj for some j ∈ {i + 1, . . . , m}. Fix the largest j ∈
{i + 1, . . . , m} such that Q ⊆ Bj . We split the argument into two cases
based on whether the path Q intersects T 0

j or not.
Suppose first that xα ∈ V (T 0

j ) for some α ∈ {1, . . . , p}. Since Q is T -
clean, xα is the only vertex of Q on Tj . In particular, the vertex xα−1 is
adjacent to T 0

j in Bj and does not belong to Tj , so xα−1 ∈ Aj . The path
x0Qxα−1 is disjoint from V (T 0

j ), so by Claim 2 it contains attachment-
vertices of Bj on at most one component of Fj−1. Since x0 ∈ V (Ti) and
xα−1 ∈ Aj , this implies that xα−1 ∈ V (Ti), and therefore α − 1 = 0, that
is α = 1.

The vertex x0 is the only vertex of Q on Ti, and the vertex x1 is the only
vertex of Q on Tj . We have x1 ∈ V (T 0

j ), so by definition of Tj the vertex x2
is an attachment-vertex of Bj on a tree Ti′ distinct from Ti. By our choice of
i, we have i < i′ < j. Hence, Bj has attachment-vertices only on Ti and Ti′ .
Since Q ⊆ Bj , and Q is T -clean, this implies V (Q) ∩ V (Fj) = {x0, x1, x2}.
Since p ⩾ 4, the path x2Qxp is contained in a non-trivial Fj-bridge which,
by Claim 6 is equal to Bk for some k ∈ {j + 1, . . . , m}. Since Q ⊆ Bj ,
we have Bk ⊆ Bj . The edge x1x2 is a trivial Fj-bridge contained in Bk

that contains an attachment-vertex in Aj , and its attachment-vertex x2
belongs to Bk (see Figure 4.4a). Hence, by Claim 8 applied to the trivial
path consisting of the vertex x2 alone, we have x2 ∈ Aout

k .
We have Bk ⊆ Bj , so by Claim 5, the Fj-bridge Bk has an attachment-

vertex on Tj . The vertex x2 is an attachment-vertex of Bk on Ti′ , so Bk

has attachment-vertices only on Ti′ and Tj . Since V (Q) ∩ V (Ti′) = {x2}
and V (Q)∩V (Tj) = {x1}, we have x3Qxp ⊆ Bk −Ak. Since x2 ∈ Aout

k this
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implies that x3 ∈ Dk ⊆ V (T 0
k ), and thus x4 ∈ V (Tk). Hence {x3, x4} ⊆

V (Tk), contrary to the assumption that Q is T -clean.
Now consider the case when Q is disjoint from T 0

j . We have x0 ∈ V (Ti)
and x1 ̸∈ V (Ti), so x0x1 ̸∈ E(Fj). Let B be the Fj-bridge containing the
edge x0x1. Because x0x1 ∈ E(Bj), we have B ⊆ Bj , so by Claim 5, B

has an attachment-vertex on Tj . The vertex x0 is an attachment-vertex of
B on Ti, so B has attachment-vertices only on Ti and Tj . Observe that
Q ̸⊆ B; indeed, if B is trivial, this follows from the fact that p ⩾ 4, and if
B is a non-trivial Fj-bridge, then by Claim 6, we have B = Bk for some
k ∈ {j + 1, . . . , m}, and Q ̸⊆ Bk by our choice of j. Since Q ̸⊆ B and
x0x1 ∈ E(B), Q contains a vertex xα that is an attachment-vertex of B

distinct from x0. Since B has attachment-vertices only on Ti and Tj and
Q is T -clean, the vertex xα is the only vertex of Q on Tj .

We claim that α ⩽ 2. If B is trivial, then α = 1 ⩽ 2, so suppose that
B is non-trivial, and thus B = Bk for some k ∈ {j + 1, . . . , m}. We have
x0 ∈ V (Ti) and xα ∈ V (Tj), so by Claim 2, the path x0Qxα must intersect
T 0

k in a vertex xα′ with 0 < α′ < α. Since Q is T -clean, the vertex xα′

is the only vertex of Q in V (Tk). Hence, by definition of Tk, the vertices
xα′−1 and xα′+1 are attachment-vertices of Bk, and therefore belong to
V (Ti) ∪ V (Tj). The only vertex of Q in V (Ti) is x0, and the only vertex of
Q in V (Tj) is xα, so xα′−1 = x0 and xα′+1 = xα. Hence α′ = 1 and α = 2.
This proves α ⩽ 2.

Since Q ⊆ Bj − V (T 0
j ), Claim 2 implies that the only component of

Fj−1 intersected by Q is Ti. Hence, V (Q) ∩ V (Fj) = {x0, xα}. Since α ⩽ 2
and p ⩾ 4, the path xαQxp is contained in a non-trivial Fj-bridge, which
equals Bk for some k ∈ {j +1, . . . , m}. See Figure 4.4b. The Fj-bridge B is
contained in Bj and has an attachment-vertex in Aj , and the vertex xα is an
attachment-vertex of Bk in V (Tj). Hence, by Claim 8 applied to the trivial
path consisting of the vertex xα alone, we have xα ∈ Aout

k . By Claim 3, Bk

is disjoint from T 0
j , and it is contained in the same component of Bj −V (T 0

j )
as Q. Hence, by Claim 2, Bk can only have attachment-vertices in V (Ti)
and V (Tj). Since Q is T -clean with x0 ∈ V (Ti) and xα ∈ V (Tj), we have
xα+1Qxp ⊆ Bk − Ak. Since xα ∈ Aout

k , this implies xα+1 ∈ Dk ⊆ V (T 0
k ),

and thus xα+2 ∈ V (Tk). Therefore, {xα+1, xα+2} ⊆ V (Tk), contrary to the
assumption that Q is T -clean. □

Although the partition T is 6-blocking, its parts can be arbitrarily large.
The next step of our construction refines the chordal partition.
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Bk

Bj

x0

x1

x2

Ti′

Ti

Tj

(a) V (Q) ∩ V (T 0
j ) ̸= ∅

Ti

Bk

B

x0

xα

Tj

(b) V (Q) ∩ V (T 0
j ) = ∅

Figure 4.4. The two cases in the proof that the length of Q is at most
3.

5. Refinement of the Chordal Partition

In order to define our refinement of the chordal partition T , we need to
study its properties in more detail.

Claim 10. — For each j ∈ {1, . . . , m}, |Dj | < ∆40.

Proof. — If Bj has no attachment-vertices, then |Dj | = 1 ⩽ ∆40, so
suppose that Bj has some attachment-vertices. Bj has attachment-vertices
in at most two components of Fj−1, and on each of them Aout

j has one or
two vertices, so |Aout

j | ⩽ 4. Since each vertex in Dj is at distance at most
τ from a vertex in Aout

j ,

|Dj | ⩽ |Aout
j |(∆0 + . . . + ∆τ ) < 4∆τ+1 < ∆τ+3 = ∆40. □

Two paths in a graph are internally disjoint if none of them contains
an inner vertex of another, and a path is internally disjoint from a set of
vertices D if no inner vertex of the path belongs to D.

Claim 11. — For each j ∈ {1, . . . , m}, the tree T 0
j is the union of a

family Pj of at most 2∆40 geodesic paths which are pairwise internally
disjoint and internally disjoint from Dj .

Proof. — Let S denote the set of all vertices of T 0
j with degree at least

3. Since T 0
j is the tree in Bj − Aj which contains all vertices in Dj and has

the smallest possible number of edges, every leaf of T 0
j belongs to Dj , so T 0

j

has at most |Dj | leaves, and thus |S| ⩽ |Dj |. The tree T 0
j is a subdivision

of a tree with vertex-set S ∪ Dj . Therefore, T 0
j is the union of a set P of

at most |S ∪ Dj | pairwise internally disjoint paths such that each P ∈ P
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has its ends in S ∪ Dj and is internally disjoint from S ∪ Dj . We have
|P| ⩽ |S ∪ Dj | ⩽ 2|Dj |, so by Claim 10, |P| ⩽ 2∆40. Suppose towards a
contradiction that some path P ∈ P is not geodesic in Bj − Aj , and let P ′

be a geodesic path in Bj − Aj between the ends of P . Hence, P ′ has less
edges than P , so any spanning tree of P ′ ∪

⋃
Q∈P\{P } Q has less edges than

T and contains all vertices in Dj , which is a contradiction. □

An important property of geodesic paths is that the distances between
vertices are preserved in them. We show that the tree T 0

j ‘approximates’
the distances between its vertices in Bj − Aj .

Claim 12. — Let j ∈ {1, . . . , m}, and let x, y ∈ V (T 0
j ). Then

distT 0
j
(x, y) < ∆40 distBj−Aj

(x, y).

Proof. — Let P be a geodesic x–y path in Bj −Aj . We have distP (x, y) =
distBj−Aj

(x, y), so we need to show that distT 0
j
(x, y) < ∆40 distP (x, y).

First consider the case when P is internally disjoint from V (T 0
j ).

Let z0, . . . , zs denote the sequence of all vertices of the path xT 0
j y that

belong to Dj ∪ {x, y} or have degree at least 3 in T , ordered by increasing
distance from x (so that z0 = x and zs = y).

We show that s < |Dj | by associating a distinct vertex z′
i ∈ Dj to each

zi. Let i ∈ {0, . . . , s}. If zi ∈ Dj , then let z′
i := zi. Otherwise zi ̸∈ Dj , and

either zi is an end of xT 0
j y but not a leaf of T 0

j , or zi has degree at least 3
in T 0

j . In both cases, there exists a leaf z′
i in T 0

j such that zi is adjacent to
the component of T 0

j − V (xT 0
j y) that contains z′

i. By our choice of T 0
j , we

have z′
i ∈ Dj . Clearly, the vertices z′

0, . . . , z′
s are distinct, so s < |Dj |.

For each i ∈ {0, . . . , s − 1}, let T (i) denote the graph obtained from T 0
j

by removing all edges and inner vertices of ziT
0
j zi+1 and adding the path

P . The path P has ends in z0 and zs, and is internally disjoint from V (T 0
j ),

so T (i) is a tree. This tree still contains D, so by definition of T 0
j ,

|E(T 0
j )| ⩽ |E(T (i))| = |E(T 0

j )| − |E(ziT
0
j zi+1)| + |E(P )|,

so distT 0
j
(zi, zi+1) = |E(ziT

0
j zi+1)| ⩽ |E(P )|. Therefore,

distT 0
j
(x, y) =

s−1∑
i=0

|E(ziT
0
j zi+1)| ⩽ s · |E(P )| < |Dj | · distP (x, y)

⩽ ∆40 · distP (x, y),

where the last inequality follows from Claim 10.
It remains to consider the case when P has at least one inner vertex

in V (T 0
j ). Let w0, . . . , wn denote the vertices in V (P ) ∩ V (T 0

j ) ordered by
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increasing distance from x in P (so that w0 = x and wn = y). For each
i ∈ {0, . . . , n − 1}, the path wiPwi+1 has no inner vertices in V (T 0

j ), so
distT 0

j
(wi, wi+1) < ∆40 · distP (wi, wi+1), and thus

distT 0
j
(x, y) ⩽

n−1∑
i=0

distT 0
j
(wi, wi+1) <

n−1∑
i=0

∆40 · distP (wi, wi+1)

= ∆40 · distP (x, y). □

Let c ∈ N. For any vertex x ∈ V (G), the number of vertices x′ ∈ V (G)
with distG(x, x′) ⩽ c is at most

∑c
i=0 ∆i, and therefore less than ∆c+1.

Therefore, for any edge e ∈ E(G), the number of edges e′ ∈ E(G) with
distG(e, e′) ⩽ c is less than 2∆c+2 (since any such e′ is incident to a vertex
at distance at most c from one of the two endpoints of e). We use these
bounds implicitly in the following part of this section.

In a graph J , we say that a set of edges M ⊆ E(J) is d-independent if
for any pair of distinct edges e1, e2 ∈ M we have distJ(e1, e2) > d. We aim
to refine the partition T be removing a set of edges Mj ⊆ E(T 0

j ) from each
Tj , and letting the components of the resulting forests be the parts of the
partition. The precise description of the desired properties of the sets Mj

will be given in Claim 14. Roughly speaking, we want the edges in each
Mj to be far away from each other, from other sets Mj′ , and from the set
Dj , while ensuring that the components of Tj − Mj have bounded size.
In order to formalise being far away, we need the following definition. Let
i ∈ {1, . . . , m}, and suppose that the set Mi ⊆ E(T 0

i ) is already defined.
Let S be a set of vertices or a set of edges in Bi−V (T 0

i ). The mixed distance
of S from Mi is

mdisti(S)

:= min{distBi−Ai
(Mi, v) + distBi−V (T 0

i
)(v, S) : v ∈ V (Ti) \ V (T 0

i )}.

Our goal is to construct the sets Mj so that for an appropriate constant c

(specified in the next section), for each j ∈ {1, . . . , m} with Xj ̸= ∅, we
have mdisti(Mj) > c for all i ∈ Xj .

The sets Mj will be constructed one-by-one, where each set Mj is ob-
tained from T 0

j by selecting an appropriate set of edges from each geodesic
path in Pj , using the following claim, which exploits the fact that G is a
plane graph.

Claim 13. — Let c ⩾ 1, let d := (8c + 12)∆c+2, and let n0 ⩾ d + 2c.
Let P be a geodesic path in Bj − Aj for some j ∈ {1, . . . , m} with Xj ̸= ∅,
and suppose that for each i ∈ Xj we are given a set Mi ⊆ E(T 0

i ) that is
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(d + 2c)-independent in Bi − Ai, Then there exists a set MP ⊆ E(P ) that
is (d + 2c)-independent in Bj − Aj such that each component of P − MP

has length at least min{n0, |E(P )|} and less than 5n0, and for each i ∈ Xj

we have mdisti(MP ) > c.

Proof. — We may assume that the length of P is at least 5n0, as oth-
erwise the lemma is satisfied by MP = ∅. Let x and y denote the ends
of P . Let {P1, . . . , Pt} be an inclusion-maximal family of pairwise vertex-
disjoint subpaths of P each of length d such that distP (V (Pα), V (Pβ)) ⩾ n0
for distinct α, β ∈ {1, . . . , t}, and distP (V (Pα), {x, y}) ⩾ n0 for every
α ∈ {1, . . . , t}. Since n0 > d and the length of P is at least 5n0, we have
t > 0. Consider any maximal subpath P ′ ⊆ P internally disjoint from each
of the paths P1, . . . , Pt. Then the length of P ′ is at least n0. Since our
family of paths is inclusion-maximal, the length of P ′ is less than d + 2n0
as otherwise we would be able to extend our family with a path of length
d obtained from P ′ by removing at least n0 vertices from each side. Since
d + 2n0 < 3n0, we conclude that the length of any such P ′ is at least n0
and less than 3n0.

We claim that each path Pα contains an edge eα such that for every
i ∈ Xj we have mdisti(eα) > c. Since |Xj | ⩽ 2, it suffices to show that
for each i ∈ Xj , there is less than d/2 edges e ∈ E(P ) with mdisti(e) ⩽ c.
Fix α ∈ {1, . . . , t} and i ∈ Xj . Partition Mi into two sets M ′

i and M ′′
i by

assigning each edge e′ ∈ Mi to M ′
i if distBi−Ai

(e′, V (Pα)) ⩽ c, and to M ′′
i

if distBi−Ai(e′, V (Pα)) > c. Since Mi is (d + 2c)-independent in Bi − Ai,
and the length of Pα is at most d, the set M ′

i contains at most one edge.
For every e′ ∈ M ′′

i , let Ue′ denote a subtree of G on all vertices at
distance at most c from e′ in Bi − Ai such that each u ∈ V (Ue′) has the
same distance from e′ in Ue′ as in Bi − Ai (one can think of Ue′ as a
“bfs-spanning tree rooted at the edge e′”) Since the set Mi is (d + 2c)-
independent in Bi − Ai, the trees Ue′ are pairwise vertex-disjoint, and by
definition of M ′′

i the trees Ue′ are disjoint from the path Pα. For each
e′ ∈ M ′′

i , let Ze′ := NBi
(V (Ue′)) ∩ Ai. For each z ∈ Ze′ , define a V (Ti)–Ai

path Q(e′, z) as follows. Let y be a vertex of Ue′ adjacent to z in Bi which
minimises distUe′ (e′, y) (and thus also minimises distBi−Ai

(e′, y)). Let x be
the vertex on the path between y and e′ which lies on V (Ti) and minimises
distUe′ (x, y) (this is well defined since e′ has both ends in V (Ti)). Then the
path Q(e′, z) is obtained from xUe′y by adding the vertex z attached to y.
Each pair of distinct paths Q1 = Q(e′

1, z1) and Q2 = Q(e′
2, z2) is consistent,

meaning that if their intersection Q1 ∩ Q2 is not empty, then Q1 ∩ Q2 is a
path with an end in a common end of Q1 and Q2.

Innov. Graph Theory 1, 2024, pp. 39–86



POWERS OF PLANAR GRAPHS AND PRODUCT STRUCTURE 65

Pα

Tie′e′1 e′2

z1 z2

w+

Figure 5.1. Illustration of a possible scenario in Claim 13. The set
M ′

i consists of the edge e′, and the boundary of the face f contains
two paths Q(e′

1, z1) and Q(e′
2, z2). Hence, S = {e′} ∪ E(Q(e′

1, z1)) ∪
E(Q(e′

2, z2)).

Let J denote the union of Ti and the paths Q(e′, z) for all e′ ∈ M ′′
i and

z ∈ Ze′ . The graph J is a subgraph of Bi that intersects Ai only in the sets
Ze′ . Thus, all vertices in the sets Ze′ are incident with the outer face of Bi.
Let J+ denote the planar graph obtained from J by adding a new vertex
w+ on the outer-face of Bi and making it adjacent to all vertices in the sets
Ze′ . See Figure 5.1. Since Pα ⊆ Bi − Ai and distBi−Ai

(V (Pα), M ′′
i ) > c,

the path Pα is disjoint from J+ and therefore the path Pα is contained in
a face f of J+. Let S denote the set of all edges in E(J) \ E(Ti) on the
boundary of f . Since the paths Q(e′, z) are pairwise consistent V (Ti)–Ai

paths, the edges in S can be covered by the union of at most two paths of
the form Q(e′, z). In particular, |S| ⩽ 2c + 2.

We claim that for every e ∈ E(Pα) with mdisti(e) ⩽ c we have distBi
(S∪

M ′
i , e) ⩽ c. Suppose that mdisti(e) ⩽ c. Hence, there exist e′ ∈ Mi and

v ∈ V (Ti) \ V (T 0
i ) that satisfy distBi−Ai(e′, v) + distBi−V (T 0

i
)(v, e) ⩽ c. If

e′ ∈ M ′
i , then we indeed have distBi

(S ∪ M ′
i , e) ⩽ c, so we assume that

e′ ∈ M ′′
i . Let R be a shortest path between v and e in Bi − V (T 0

i ). Since
distBi−Ai(e, e′) > c, the path R must intersect Ai. Let z be the vertex
of R that belongs to Ai and is closest to v on R. Hence, z ∈ Ze′ . Since
J+ contains Q(e′, z), the path Q(e′, z) is disjoint from the interior of f .
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Therefore, the subpath of R between z and e must intersect the boundary
of f in a vertex u, and since R is disjoint from T 0

i , the vertex u is an end
of an edge in S. Therefore, distBi

(S, e) ⩽ c. This completes the proof that
for every e ∈ E(Pα), if mdisti(e) ⩽ c, then distBi

(S ∪ M ′
i , e) ⩽ c. Since

|S ∪ M ′
i | ⩽ |S| + |M ′

i | ⩽ 2c + 3, for each i ∈ Xj there exist less than
(4c + 6)∆c+2 edges e ∈ E(Pα) with mdisti(e) ⩽ c. Since |Xj | ⩽ 2 and the
length of Pα is (8c + 12)∆c+2, for each α ∈ {1, . . . , t} there exists an edge
eα ∈ E(Pα) such that mdisti(eα) > c for all i ∈ Xj .

Let MP := {e1, . . . , et}. Thus, mdisti(MP ) > c for each i ∈ Xj . Since
the distance between any two of the paths P1, . . . , Pt is at least n0 on P ,
the set MP is n0-independent in P . Because P is geodesic in Bj − Aj and
n0 ⩾ d + 2c, the set MP is (d + 2c)-independent in Bj − Mj .

It remains to show that the components of P − MP have appropriate
sizes. Let Q be a component of P − MP . Since MP contains one edge from
each of the subpaths P1, . . . , Pt, the path Q intersects at most two of the
paths P1, . . . , Pt, and the total number of edges of Q shared with P1, . . . , Pt

is at most 2d, and thus less than 2n0. The edges of Q that do not belong
to any of the paths P1, . . . , Pt induce a maximal subpath of P internally
disjoint from each of the paths P1, . . . , Pt, which thus has length at least
n0 and less than 3n0. Hence, the length of P ′ is at least n0 and less than
5n0. □

Finally, we are ready to construct the sets Mj .

Claim 14. — Let c ⩾ 1 and d := (8c + 12)∆c+2. There exists a family
{Mj ⊆ E(T 0

j ) : j ∈ {1, . . . , m}} such that for every j ∈ {1, . . . , m}:

(a) Mj is (d + 2c)-independent in Bj − Aj ,
(b) distT 0

j
(Dj , Mj) ⩾ 2∆40,

(c) for each i ∈ Xj , mdisti(Mj) > c,
(d) each component of T 0

j −Mj has at most 10∆80(d+2c) vertices, and
(e) for any pair of vertices x, y ∈ V (T 0

j ) satisfying distBj−Aj
(x, y) ⩽ d+

2c and E(xT 0
j y) ∩ Mj ̸= ∅, we have distT 0

j
(x, y) = distBj−Aj

(x, y).

Proof. — Let n0 := ∆40(d + 2c).
We construct the sets Mj by induction on j. Let j ∈ {1, . . . , m}, and

suppose that the sets Mi with i < j have already been constructed. In
particular, each Mi is (d + 2c)-independent in Bi − Ai. We now construct
Mj .

By Claim 11 there is a family Pj of at most 2∆40 pairwise internally dis-
joint geodesic paths in Bj −Aj whose union is T 0

j , and which are internally
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disjoint from Dj . Observe that every inner vertex of a path P ∈ Pj has
degree two in T 0

j .
For each P ∈ Pj , let MP ⊆ E(P ) be the subset of edges obtained by

applying Claim 13 to c, n0 and P . Thus, MP is (d + 2c)-independent in
Bj − Aj , mdisti(MP ) > c for each i ∈ Xj , and each component of P − MP

is a path of length at least min{n0, |E(P )|} and less than 5n0.
We show that the set Mj :=

⋃
{MP : P ∈ Pj} satisfies the claim. For the

proof of (a), we need to show that Mj is (d + 2c)-independent in Bj − Aj .
Suppose towards a contradiction that there are distinct e1, e2 ∈ Mj with
distBj−Aj

(e1, e2) ⩽ d + 2c. By Claim 12,

distT 0
j
(e1, e2) < ∆40 distBj−Aj

(e1, e2) ⩽ ∆40(d + 2c) = n0.

However, if P ∈ Pj is the path containing e1, then the shortest path
between e1 and e2 in T 0

j contains a component of P − MP , and there-
fore has length at least min{n0, |E(P )|} = n0 (since e1 ∈ E(P )); that is,
distT 0

j
(e1, e2) ⩾ n0, a contradiction.

For any P ∈ Pj and e ∈ MP , the distance between e and the ends of P

is at least n0 = ∆40(d + 2c), and therefore at least 2∆40. Since the paths
in Pj are pairwise internally disjoint, and internally disjoint from Dj , this
implies that distT 0

j
(Dj , Mj) ⩾ 2∆40. Therefore (b) is satisfied.

By definition of the sets MP , for any P ∈ Pj and i ∈ Xj we have
mdisti(MP ) > c, and therefore for each i ∈ Xj we have mdisti(Mj) > c.
This proves (c).

For (d), observe that if a component T ′ of T 0
j − Mj intersects a path

P ∈ Pj , then T ′ ∩ P is a component of P − MP , so it has less than 5n0
edges, and therefore at most 5n0 vertices. Hence,

|V (T ′)| ⩽ |Pj | · 5n0 ⩽ 2∆40 · 5∆40(d + 2c) = 10∆80(d + 2c).

Finally, for the proof of (e), let x, y ∈ V (T 0
j ) be vertices satisfying

distBj−Aj (x, y) ⩽ d + 2c and E(xT 0
j y) ∩ Mj ̸= ∅. Let e ∈ E(xT 0

j y) ∩ Mj ,
and let P ∈ Pj be the path containing e. By Claim 12,

distT 0
j
(x, y) < ∆40 · distBj−Aj (x, y) ⩽ ∆40 · (d + 2c) = n0.

Since MP ̸= ∅, every component of P − MP has length at least n0, so the
path xT 0

j y does not contain a component of P −MP . Since E(xT 0
j y)∩MP ̸=

∅ and all inner vertices of P have degree two in T 0
j , this implies that

xT 0
j y is a subpath of P , and since P is geodesic in Bj − Aj , we have

distT 0
j
(x, y) = distBj−Aj

(x, y). □
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6. Analysis of the Partition

Let ℓ := 222, and let c := 2ℓ+6 = 450. Fix a family {Mj : j ∈ {1, . . . , m}}
satisfying Claim 14 for our value of c. Let R denote the partition of V (G)
where each part is the vertex-set of a component of

⋃m
j=1(Tj − Mj). By

Claim 14(d), for each j ∈ {1, . . . , m}, the size of every component of T 0
j −Mj

is at most 10∆80((8c+12)∆c+2 +2c) = 10∆80(3612 ∆452 +900). Since each
component of Tj − Mj can be obtained from a component of T 0

j − Mj by
attaching at most ∆ vertices to each vertex of the component, the width
of R is at most (∆ + 1) · 10∆80(3612 ∆452 + 900).

To complete the proof of Theorem 3.1, we show that R is ℓ-blocking;
that is, no R-clean path in G has length greater than ℓ. Since a subpath
of an R-clean path is R-clean, it suffices to show that there is no R-clean
path of length exactly ℓ + 1, so in our analysis we focus only on paths of
length at most ℓ + 1.

We start by proving some properties of R-clean paths.

Claim 15. — Let j ∈ {1, . . . , m}, and let Q = (x0, . . . , xq) be an R-
clean path in Bj − Aj with {x0, xq} ⊆ V (Tj) and q ∈ {1, . . . , ℓ + 1}.
Then E(x0Tjxq) ∩ Mj ̸= ∅, and for each e ∈ E(x0Tjxq) ∩ Mj we have
distTj (e, xα) ⩽ q + 2 for α ∈ {0, q}. In particular,

distTj (Mj , xα) ⩽ q + 2 for α ∈ {0, q}.

Proof. — For each α ∈ {0, q}, let x′
α denote the vertex xα if xα ∈ V (T 0

j ),
or the vertex in V (T 0

j ) that is adjacent to xα in Tj if xα ̸∈ V (T 0
j ). Hence,

x′
α is in the same part of R as xα and distTj (x′

α, xα) ⩽ 1. In order to apply
Claim 14(e) to x′

0 and x′
q, observe that

distBj−Aj
(x′

0, x′
q) ⩽ distTj

(x′
0, x0) + distQ(x0, xq) + distTj

(xq, x′
q)

⩽ q + 2
⩽ ℓ + 3

< (8c + 12)∆c+2 + 2c.

Furthermore, since Q is R-clean, the part of R containing x0 and x′
0 is

distinct from the part containing xq and x′
q, so E(x′

0T 0
j x′

q) ∩ Mj ̸= ∅.
Therefore, by Claim 14(e),

distT 0
j
(x′

0, x′
q) = distBj−Aj (x′

0, x′
q) ⩽ q + 2.

Since Mj ⊆ E(T 0
j ), we have E(x0Tjxq) ∩ Mj = E(x′

0T 0
j x′

q) ∩ Mj ̸= ∅. Let
e ∈ E(x′

0T 0
j x′

q) ∩ Mj . The length of the path x′
0T 0

j x′
q is at most q + 2, so
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for each α ∈ {0, q} we have distT 0
j
(e, x′

α) ⩽ q + 1, and therefore

distTj
(e, xα) = distTj

(e, x′
α) + distTj

(x′
α, xα) ⩽ (q + 1) + 1 = q + 2. □

Claim 16. — Let j ∈ {1, . . . , m}, and let Q = (x0, . . . , xq) be an R-
clean path in Bj with q ∈ {0, . . . , ℓ + 1} that is internally disjoint from Aj .
Then |V (Q) ∩ V (Tj)| ⩽ 2.

Proof. — Suppose to the contrary that there exist distinct vertices
y1, y2, y3 ∈ V (Q) ∩ V (Tj). Since Tj ⊆ Bj − Aj and Q is internally dis-
joint from Aj , each subpath of Q between two of the vertices y1, y2, y3 is
contained in Bj − Aj . By Claim 15 applied to y1Qy2, there exists an edge
e ∈ E(y1Tjy2) ∩ Mj with distBj−Aj (e, y1) ⩽ q + 2 and distBj−Aj (e, y2) ⩽
q + 2. Without loss of generality, y3 belongs to the same component of
Tj − e as y1, and therefore e ̸∈ E(y1Tjy3). By Claim 15 applied to y1Qy3,
there exists an edge e′ ∈ E(y1Tjy3) ∩ Mj with distBj−Aj

(e′, y1) ⩽ q + 2.
Therefore, e ̸= e′, and

distBj−Aj
(e, e′) ⩽ distBj−Aj

(e, y1) + distBj−Aj
(y1, e′)

⩽ 2(q + 2) ⩽ 2ℓ + 6 = c,

which contradicts Claim 14(a). □

Claim 17. — Let j ∈ {1, . . . , m}, and let Q = (x0, . . . , xq) be an R-
clean path in Bj with q ∈ {0, . . . , ℓ + 1} that is internally disjoint from Aj ,
such that x0 is an attachment-vertex of Bj on a tree Ti with i ∈ Xj and
distBi−Ai

(x0, Mi) ⩽ ℓ + 3. Then |V (Q) ∩ V (Tj)| ⩽ 1.

Proof. — Suppose to the contrary that |V (Q) ∩ V (Tj)| > 1. Hence, by
Claim 16, we have |V (Q) ∩ V (Tj)| = 2, say V (Q) ∩ V (Tj) = {xα, xβ} for
some α, β ∈ {0, . . . , q} with α < β. Since x0 ∈ V (Ti), we have α ⩾ 1. Since
{xα, xβ} ⊆ V (Tj) ⊆ Bj − Aj and Q is internally disjoint from Aj , we have
x1Qxβ ⊆ Bj − Aj . By Claim 15 applied to xαQxβ , we have

distBj−Aj
(xα, Mj) ⩽ β − α + 2 ⩽ q − α + 2 ⩽ ℓ − α + 3.

The vertex x0 is an attachment-vertex of Bj in V (Ti), i ∈ Xj , and by
Claim 5, we have Bj ⊆ Bi, and by Claim 3, Bj has no attachment-vertices
in V (T 0

i ), so Bj − Aj ⊆ Bj ⊆ Bi − V (T 0
i ). Therefore,

mdisti(Mj) ⩽ distBi−Ai
(Mi, x0) + distBi−V (T 0

i
)(x0, Mj)

⩽ (ℓ + 3) + (distBj
(x0, xα) + distBj−Aj

(xα, Mj))
⩽ (ℓ + 3) + α + (ℓ − α + 3) = 2ℓ + 6 = c.

This contradicts Claim 14(c). □
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Next, we bound the length of R-clean paths in some special cases. Recall
that Fj =

⋃
i<j Ti.

Claim 18. — Let i, j ∈ {1, . . . , m} with i < j, and let Q = x0 · · · xq

be an R-clean path with q ∈ {1, . . . , ℓ + 1}, x0 ∈ V (Ti), xq ∈ V (Tj), and
V (Q) ∩ V (Fj) = {x0, xq}. Then

(a) if distBi−Ai
(x0, Mi) ⩽ ℓ + 3 or distBj−Aj

(xq, Mj) ⩽ ℓ + 3, then
q ⩽ 2;

(b) otherwise, q ⩽ 4.

Proof. — Since V (Q) ∩ V (Fj) = {x0, xq}, the path Q is contained in
some Fj-bridge. If that Fj-bridge is trivial, then q = 1 and the claim
follows. Hence, Q is contained in a non-trivial Fj-bridge, which equals Bk

for some k > j by Claim 6. By Claim 2, the set V (T 0
k ) separates the vertices

x0 and xq in Bk, so some inner vertex of Q must lie on T 0
k .

Let xα be an inner vertex of Q in V (T 0
k ). Since the vertices xα−1 and

xα+1 are adjacent to V (T 0
k ) in Bk, they belong to Ak ∪ V (Tk). Since the

only attachment-vertices of Bk on Q are x0 ∈ V (Ti) and xq ∈ V (Tj), we
conclude that xα−1 ∈ {x0}∪V (Tk) and xα+1 ∈ {xq}∪V (Tk). By Claim 16,
we have |V (Q)∩V (Tk)| ⩽ 2. Since xα ∈ V (T 0

k ) ⊆ V (Tk), at most one of the
vertices xα−1 and xα+1 lies on Tk. In particular, xα−1 = x0 or xα+1 = xq,
so α ∈ {1, q − 1}. If xα−1 = x0 and xα+1 = xq, then α = 1 and q = 2, and
the claim holds. Hence we may assume that one of xα−1 and xα+1 lies on
Tk, and therefore V (Q)∩V (Tk) = {x1, x2} or V (Q)∩V (Tk) = {xq−2, xq−1}.
Thus, there exists β ∈ {1, q − 2} such that V (Q) ∩ V (Tk) = {xβ , xβ+1}. By
Claim 15 applied to the path xβQxβ+1, we have distBk−Ak

(xβ , Mk) ⩽ 3
and distBk−Ak

(xβ+1, Mk) ⩽ 3.
For the proof of (a), suppose that distBi−Ai

(x0, Mi) ⩽ ℓ + 3 or
distBj−Aj

(xq, Mj) ⩽ ℓ+3. Hence, by Claim 17, we have |V (Q)∩V (Tk)| = 1,
so xα−1 = x0 and xα+1 = xq, and therefore q = 2. This proves (a).

Next, we show (b). Suppose that β = 1. Then xq ∈ V (Tj), x2 ∈ V (Tk),
V (x2Qxq) ∩ V (Fk) = {xq, x2}, and distBk−Ak

(x2, Mk) ⩽ 3 < ℓ + 3. Hence,
by (a), the length of x2Qxq is at most 2, and therefore q ⩽ 4. The case when
β = q − 2 is similar: We have x0 ∈ V (Ti), xq−2 ∈ V (Tk), V (x0Qxq−2) ∩
V (Fk) = {x0, xq−2}, and distBk−Ak

(xq−2, (Mk)) ⩽ 3 < ℓ + 3. Hence, by
(a), the length of x0Qxq−2 is at most 2, so q ⩽ 4. This completes the proof
of (b). □

Claim 19. — Let i ∈ {1, . . . , m}, and let Q = x0 · · · xq be an R-clean
path with q ∈ {0, . . . , ℓ + 1} and {x0, xq} ⊆ V (Q) ∩ V (Fi) ⊆ V (Ti). Then
q ⩽ 4.
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Proof. — If q = 0, then the claim holds trivially, so we assume that x0 ̸=
xq. By Claim 16, we have |V (Q) ∩ V (Fi)| ⩽ 2, so V (Q) ∩ V (Fi) = {x0, xq}.
Since (V (Tj) : j ∈ {1, . . . , m}) is a partition of V (G), each inner vertex of
Q belongs to some tree Tj with j > i. Let Tj be the tree containing an
inner vertex of Q with the smallest j. Thus, Q intersects Fj−1 only in its
ends, and Bj is the Fj−1-bridge containing Q. By Claim 5, Bj ⊆ Bi. Since
Bj has attachment-vertices in V (Ti), we have i ∈ Xj . By Claim 15, we have
distTi

(x0, Mi) ⩽ q + 2 ⩽ ℓ + 3 and distTi
(xq, Mi) ⩽ q + 2 ⩽ ℓ + 3. Hence,

by Claim 17, we have |V (Q) ∩ V (Tj)| = 1, say V (Q) ∩ V (Tj) = {xα}. By
Claim 18(a), each of the paths x0Qxα and xαQxq has length at most 2, so
q ⩽ 4. □

For each j ∈ {1, . . . , m}, the graph Bj intersects at most three compo-
nents of Fj , namely, Tj and at most two components of Fj−1 on which Bj

has attachment-vertices. We aim to show that every R-clean path in Bj

with both ends on Fj has length at most 36 (the value τ = 37 was chosen
to be greater than this bound). We first prove the following helper claim.

Claim 20. — Let i, j ∈ {1, . . . , m} with i < j, let Q = (x0, . . . , xq)
be an R-clean path in Bj with q ∈ {0, . . . , ℓ + 1}, V (Q) ∩ V (Ti) = {x0}
and xq ∈ V (Fj). Then q ⩽ 8(a − 1), where a ∈ {1, 2, 3} is the number of
components of Fj that intersect Q.

Proof. — If a = 1, then since V (Q) ∩ V (Ti) = {x0}, the only component
of Fj intersecting Q is Ti, and thus xq = x0, so q = 0 = 8(a − 1). Hence,
we assume that a ⩾ 2. Let Ti′ be the component of Fj that contains a
vertex of Q, is distinct from Ti and has i′ as small as possible. Let xα

and xβ denote respectively the first and the last vertex of Q in V (Ti′). By
Claim 18, the length of x0Qxα is at most 4, and by Claim 19, the length
of xαQxβ is also at most 4. Hence, β ⩽ 8. If i′ = j, then by our choice of
i′, we have V (Q) ∩ V (Fj) ⊆ {x0} ∪ V (Tj), so xq ∈ V (Tj), and therefore
q = β ⩽ 8 ⩽ 8(a − 1). Hence, assume that i′ ̸= j which means that i′ ∈ Xj .
The path Q intersects Ti and Ti′ , and by Claim 2 it intersects also Tj , so
a = 3. We have V (xβQxq) ∩ V (Ti′) = {xβ}, and the path xβQxq intersects
at most two components of Fj , so we already know that its length is at
most 8(2 − 1) = 8, so q ⩽ β + 8 ⩽ 16 = 8(a − 1). □

Claim 21. — Let j ∈ {1, . . . , m}, and let Q = (x0, . . . , xq) be an R-
clean path in Bj with p ∈ {0, . . . , ℓ + 1} such that {x0, xp} ⊆ V (Fj). Then
q ⩽ 36.

Proof. — Let Ti be the tree intersecting Q with the smallest i. So i ∈
Xj ∪ {j}. Let xα and xβ denote the first and the last vertex of Q in V (Ti).
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By Claim 19, the length of xαQxβ is at most 4. If i = j, then α = 0 and
β = q, so q ⩽ 4. Therefore, we assume that i < j. We have V (x0Qxα) ∩
V (Ti) = {xα} and V (xβQxq) ∩ V (Ti) = {xβ}. Hence, by Claim 20, each
of the paths x0Qxα and xβQxq has length at most 16, which implies that
q ⩽ 16 + 4 + 16 = 36. □

We proceed to the main part of the proof of Theorem 3.1. Towards a
contradiction, assume that R is not ℓ-blocking. Hence, there exists an R-
clean path P = (x0, . . . , xp) with p > ℓ. Every subpath of an R-clean path
is R-clean, so we may assume without loss of generality that the length of P

is exactly ℓ+1. Let Ti be the tree intersecting Q that has the smallest i. Let
xα and xβ denote respectively the first and the last vertex of Q belonging
to Ti. By Claim 19, the length of xαPxβ is at most 4. Hence, there exists
Q ∈ {x0Pxα, xβPxp} with length at least ⌈((ℓ + 1) − 4)/2⌉ = 110. The
path Q intersect V (Fi) only in one of its ends, and that end lies on Ti.
Therefore, to reach a contradiction and complete the proof it suffices to
show the following claim.

Claim 22. — Let i ∈ {1, . . . , m}, and let Q = (x0, . . . , xq) be an R-
clean path with q ∈ {0, . . . , ℓ+1} and V (Q)∩V (Fi) = {x0} ⊆ V (Ti). Then
q ⩽ 109.

Claim 22 is a consequence of the following technical claim.

Claim 23. — Let i ∈ {1, . . . , m}, let Q = (x0, . . . , xq) be an R-clean
path contained in an Fi-bridge such that q ∈ {74, . . . , ℓ + 1} and V (Q) ∩
V (Ti) = {x0}. Then

(a) there exist i′ ∈ {1, . . . , m} and an R-clean path Q′ = (x′
0, . . . , x′

q′)
contained in an Fi′ -bridge such that q′ ∈ {q−36, . . . , ℓ+1}, V (Q′)∩
V (Ti′) = {x′

0} and mdisti′(x′
0) ⩽ 39, and

(b) there exist j ∈ {i + 1, . . . , m} such that i ∈ Xj and
distBi−V (T 0

i
)(x0, Mj) ⩽ 42.

Before proving Claim 23, we show how it implies Claim 22.
Proof of Claim 22 assuming Claim 23. — Towards a contradiction, sup-

pose that q ⩾ 110. We will apply Claim 23(a) to (i, Q) to obtain a pair
(i′, Q′), and then we will apply Claim 23(b) to (i′, Q′) to obtain an index
j′ with contradictory properties.

We have q ⩾ 110, so in particular, q ∈ {74, . . . , ℓ + 1}. Since V (Q) ∩
V (Fi) = {x0} ⊆ V (Ti), we have V (Q) ∩ V (Ti) = {x0} and the path
Q is contained in an Fi-bridge, so i and Q satisfy the preconditions of
Claim 23. By Claim 23(a), there exist i′ ∈ {1, . . . , m} and an R-clean
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path Q′ = (x′
0, . . . , x′

q′) contained in an Fi′ -bridge such that q′ ∈ {q −
36, . . . , q} ⊆ {74, . . . , ℓ + 1}, V (Q) ∩ V (Ti′) = {x′

0} and mdisti′(x′
0) ⩽ 39.

Hence, i′ and Q′ satisfy the preconditions of Claim 23. By Claim 23(b)
applied to i′ and Q′, there exist j′ ∈ {i′ + 1, . . . , m} such that i′ ∈ Xj′ and
distBi′ −V (T 0

i′ )(x′
0, Mj) ⩽ 42. Therefore,

mdisti′(Mj′) ⩽ mdisti′(x′
0) + distBi′ −V (T 0

i′ )(x′
0, Mj′) ⩽ 39 + 42 = 81,

which contradicts Claim 14(c) since c = 450 > 81. □

The proof of Claim 23 makes use of the following claim:

Claim 24. — Let j ∈ {1, . . . , m}, let Q = (x0, . . . , xq) be an R-clean
path in Bj − V (T 0

j ) with q ∈ {0, . . . , ℓ + 1} such that x0 ∈ Aj , and there
exists an Fj-bridge B contained in Bj with x0 ∈ V (B) and xq ̸∈ V (B).
Then q ⩽ 37.

Proof. — Let xα be the last vertex on Q that belongs to V (Fj). By
Claim 21, we have α ⩽ 36. Unless q = α ⩽ 36, the path xαQxq is contained
in a non-trivial Fk-bridge which equals Bk for some k ∈ {j + 1, . . . , m} by
Claim 6. Let xα′ be the first vertex of Q that belongs to V (Bk). By Claim 8,
we have xα′ ∈ Aout

k . Towards a contradiction, suppose that q ⩾ 38, and
thus q ⩾ α + 2. Since distG(xα′ , xα) ⩽ 36, we have xα+1 ∈ Dk ⊆ V (T 0

k ),
and therefore xα+2 ∈ V (Tk). By definition of Tk, there exists a vertex
x′

α+2 ∈ V (T 0
k ) that belongs to the same component of Tk −Mk as xα+2 and

satisfies distTk
(xα+2, x′

α+2) ⩽ 1. In particular, distBk−Ak
(xα+1, x′

α+2) ⩽
2. By Claim 12, the length of the path xα+1T 0

k x′
α+2 is less than 2∆40.

Since Q is R-clean, we have E(xα+1T 0
k x′

α+2) ∩ Mk ̸= ∅, and therefore
distT 0

j
(Dk, Mk) < 2∆40, which contradicts Claim 14(b). □

It remains to prove Claim 23.

Proof of Claim 23. — Since V (Q) ∩ V (Fi) = {x0} and q ⩾ 74 > 1, Q is
contained in a non-trivial Fi-bridge, so by Claim 3, we have x0 ̸∈ V (T 0

i ),
and by Claim 6, there exists j ∈ {i + 1, . . . , m} with Q ⊆ Bj . Fix the
largest j ∈ {i + 1, . . . , m} with Q ⊆ Bj . We split the argument into two
cases based on whether Q intersects T 0

j or not.
Case 1. V (Q) ∩ V (T 0

j ) = ∅. Let B be the Fj-bridge containing the edge
x0x1. Hence, B ⊆ Bj , and B has attachment-vertices in V (Ti) and V (Tj).
We have xq ∈ V (B) because otherwise Claim 24 would imply q ⩽ 37
contrary to our assumption that q ⩾ 74. Therefore {x0, x1, xq} ⊆ V (B),
and in particular, B is non-trivial. By Claim 6, we have B = Bk for some
k ∈ {j + 1, . . . , m}. By our choice of j, we have Q ̸⊆ Bk. Hence there exist

Innov. Graph Theory 1, 2024, pp. 39–86



74 M. Distel, R. Hickingbotham, M. T. Seweryn & D. R. Wood

α, β ∈ {0, . . . , q} with α < β such that {xα, xβ} ⊆ V (Bk), xαQxβ is edge-
disjoint from Bk and xβQxq ⊆ Bk. Since x0x1 ∈ E(Bk), we have α > 0. The
vertices xα and xβ are attachment-vertices of Bk. Since x0 is the only vertex
of Q in V (Ti), the vertices xα and xβ lie on Tj . By Claim 19, the length of
xαQxβ is at most 4, and we have distBj−Aj (xβ , Mj) ⩽ 6 by Claim 15. In
particular, mdistj(xβ) ⩽ 6. By Claim 21, we have β ⩽ 36, so (a) is satisfied
by i′ = j and Q′ = xβQxq. Furthermore, distBi−V (T 0

i
)(x0, Mj) ⩽ β + 6 ⩽

42, so j satisfies (b).
Case 2. V (Q) ∩ V (T 0

j ) ̸= ∅. Let xα be the last vertex of Q in V (T 0
j ). By

Claim 21, we have α ⩽ 36. Since xα ∈ V (T 0
j ), we have xα+1 ∈ Aj ∪ V (Tj).

Suppose towards a contradiction, that xα+1 ∈ Aj . By Claim 21, we have
α+1 ⩽ 36. Then xαxα+1 is a trivial Fj-bridge contained in Bj that contains
xα+1 and does not contain xq. By Claim 24 applied to xα+1Qxq, the length
of xα+1Qxq is at most 37, so q ⩽ (α+1)+37 ⩽ 36+37 < 74, a contradiction.
Therefore, xα+1 ̸∈ Aj , so xα+1 ∈ V (Tj). By Claim 15 applied to xαQxα+1,
we have distBj−Aj

(xα+1, Mj) ⩽ 3, and thus distBi−V (T 0
i

)(x0, Mj) ⩽ (α +
1) + 3 ⩽ 36 + 3 = 39. This proves (b).

For the proof of (a), let xβ and xγ denote the last two vertices of Q in
V (Fj) where β < γ. Since {xα, xα+1} ⊆ V (Tj), we have β ⩾ α, and by
Claim 21, we have γ ⩽ 36. We have {xβ , xγ} ⊆ V (Bj)∩V (Fj) = Aj∪V (Tj).
We consider three subcases.

Subcase 2.1. xγ ∈ V (Tj). By definition of xα, the path xα+1Qxγ is dis-
joint from T 0

j , so xα+1 ∈ V (Tj) \ V (T 0
j ) and (a) is satisfied by i′ = j and

Q′ = xγQxq since

mdistj(xγ) ⩽ distBj−Aj (Mj , xα+1) + distBj−V (T 0
j

)(xα+1, xγ)

⩽ α + 1 + 3
⩽ 36 + 3 = 39.

Subcase 2.2. xγ ∈ Aj and xβ ∈ V (Tj). The path xβQxγ is internally
disjoint from Fj , so it is contained in an Fj-bridge B such that B ⊆ Bj .
We have xq ∈ V (B), since otherwise by Claim 24 applied to xγQxq the
length of xγQxq is at most 37, so q ⩽ γ + 37 ⩽ 36 + 37 < 74, which is
a contradiction. Hence, xq ∈ V (B). Therefore, B is non-trivial, and by
Claim 3, we have B ⊆ Bj − V (T 0

j ). Since γ < q, xq is not an attachment-
vertex of B, and we have xγQxq ⊆ B, so xβQxq ⊆ B ⊆ Bj − V (T 0

j ). Thus,
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(a) is satisfied by i′ = j and Q′ = xβQxq since

mdistj(xβ) ⩽ distBj−Aj
(Mj , xα+1) + distBj−V (T 0

j
)(xα+1, xβ)

⩽ α + 1 + 3
⩽ 36 + 3 = 39.

Subcase 2.3 xγ ∈ Aj and xβ ∈ Aj .
By the invariant from the construction of the forests Fj , the Fj−1-bridge

Bj has attachments on exactly one tree Ti′ with i′ ̸= i, and the vertices
xγ and xβ lie on that tree Ti′ because the only vertex of Q on Ti is x0.
By Claim 19, the length of xβQxγ is at most 4, and by Claim 15, we
have distBi′ −Ai′ (Mi′ , xγ) ⩽ 6. In particular, mdisti′(xγ) ⩽ 6. Hence, (a) is
satisfied by i′ and Q′ = xγQxq. This completes the proof. □

7. Graphs on Surfaces

This section proves Theorem 3.2 which lifts our result for blocking par-
titions of planar graphs (Theorem 3.1) to graphs on surfaces. We need the
following folklore lemma (implicit in [17, 9] for example).

Lemma 7.1. — For every connected graph G with Euler genus g and
for every bfs-layering (V0, V1, . . . ) of G, G contains a tree T that is the
union of at most 2g vertical paths with respect to (V0, V1, . . . ) such that
G − V (T ) is planar.

The next lemma is stated in terms of the following subgraph variant of
clean paths: Let G be a graph and Z be a connected partition of a subgraph
Z of G. A path P in G is Z-clean if |V (P ) ∩ V | ⩽ 1 for each V ∈ Z.

Lemma 7.2. — For any integers g ⩾ 0 and ℓ ⩾ 1, every connected graph
G with Euler genus g has a connected subgraph Z such that G − V (Z) is
planar and Z has a connected partition Z with width at most 2g((5g +
1)ℓ + 3) such that every Z-clean path of length at most ℓ in G intersects
at most three parts in Z.

Proof. — The g = 0 case holds trivially with Z the empty graph and Z
the empty set. Now assume that g ⩾ 1. Let (V0, V1, . . . ) be a bfs-layering
of G where V0 = {r} for some r ∈ V (G). By Lemma 7.1, G contains a tree
T that is the union of at most 2g vertical paths such that G′ := G − V (T )
is planar. For a, b ∈ N0 where a ⩽ b, let V[a,b] :=

⋃
(Vj : j ∈ {a, . . . , b}) and

T[a,b] := T [V (T ) ∩ V[a,b]]. For i ∈ N0, we inductively construct a sequence
of tuples (xi, Xi, Zi, Xi, Zi) with the following properties:

Innov. Graph Theory 1, 2024, pp. 39–86



76 M. Distel, R. Hickingbotham, M. T. Seweryn & D. R. Wood

(1) x0 = 0 and xi ∈ {xi−1 + 3gℓ + 1, . . . , xi−1 + 5gℓ + 1} for all i ⩾ 1;
(2) Xi is an induced subgraph of G with V (T[xi−1+1,xi]) ⊆ V (Xi) ⊆

V[xi−2+ℓ+1,xi];
(3) Zi is an induced subgraph of G with V (T[0,xi]) ⊆ V (Zi) ⊆ V[0,xi];
(4) Xi = Zi − V (Zi−1);
(5) Xi is a connected partition of Xi of width at most 2g((5g +1)ℓ+3);
(6) Zi is a connected partition of Zi of width at most 2g((5g + 1)ℓ + 3)

where Zi = Zi−1 ∪ Xi;
(7) Every path in G − V (Zi−1) of length at most ℓ intersects at most

one part in Xi; and
(8) Every Zi-clean path in G of length at most ℓ intersects at most

three parts in Zi.

Note that when i := |V (G)|, we have xi ⩾ |V (G)| and T ⊆ Zi, which
implies that (Zi, Zi) satisfies the lemma statement.

For i = 0, such a tuple exists with Xi = G[{r}], Zi = Xi, Xi = ({r}),
and Zi = Xi. Now assume that i ⩾ 1 and such a tuple exists for i − 1.

Let xi,1 := xi−1 + 3gℓ + 1 and Xi,1 := T[xi−1+1,xi,1]. Then Xi,1 is the
union of at most 2g vertical paths, and thus has at most 2g components.
Suppose G − V (Zi−1) contains a path P of length at most ℓ that inter-
sects at least two components of Xi,1. Let xi,2 := max{{j : V (P ) ∩ Vj ̸=
∅} ∪ xi,1} and Xi,2 := G[V (T[xi−1+1,xi,2]) ∪ V (P )]. Then Xi,2 has at most
2g − 1 components. Moreover, since P has length at most ℓ, it follows
that xi,2 ∈ {xi,1, . . . , xi,1 + ℓ} and V (P ) ⊆ V[xi−1−ℓ+1,xi,1], so V (Xi,2) ⊆
V[xi−1−ℓ+1,xi,1]. Iterate the above procedure until there is no path of length
at most ℓ that intersects two components of Xi,j . Such a process must
terminate within at most 2g iterations, since no path can exist if Xi,j

has only one component. As such, there exists j ∈ {1, . . . , 2g} such that
xi,j ∈ {xi−1 + 3gℓ + 1, . . . , xi−1 + 5gℓ + 1}, V (Xi,j) ⊆ V[xi−1−2gℓ+1,xi,1] ⊆
V[xi−2+ℓ+1,xi,1] and every path in G − V (Zi−1) of length at most ℓ inter-
sects at most one component of Xi,j . Set xi := xi,j , Xi := G[V (Xi,j)], and
Zi := G[Zi−1 ∪ Xi]. Let Xi be the connected partition of Xi where each
part induces a component of Xi and Zi := Zi−1 ∪ Xi,j . We now show that
the construction satisfies the desired properties.

By construction, (1), (2), (3), (4) and (7) hold clearly. For (5), since Xi

is the union of at most 2g vertical paths of length at most 5gℓ + 1 together
with the union of at most 2g paths of length at most ℓ, it follows that
|V (Xi)| ⩽ 2g((5g +1)ℓ+3). Thus (5) holds and so, by induction, (6) holds.
It remains to show (8). Let P be a Zi-clean path in G of length at most
ℓ. If V (P ) ⊆ V[0,xi−2+ℓ], then the claim follows by induction. So assume
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that V (P ) ∩ V[xi−2+ℓ+1,xi] ̸= ∅. Since V (Zi−2) ⊆ V[0,xi−2], this implies
V (P ) ∩ V (Zi−2) = ∅. Thus P only intersects parts in Xi−1 ∪ Xi. As P has
length at most ℓ, it follows by (7) that P only intersects at most one part
of Xi−1. Let W := V (P ) ∩ V (Zi−1). Since P is Zi-clean, it follows that
|W | ⩽ 1. So P − W consists of at most two components that are Zi-clean
paths in G−V (Zi−1). By (7), each component of P −W intersects at most
one part in Xi. So P intersects at most three parts in Zi, as required. □

Proof of Theorem 3.2. — Without loss of generality, we may assume
that G is connected. By Lemma 7.2 with ℓ = 895, G contains a subgraph
Z such that G′ := G − V (Z) is planar and Z has a connected partition
Z with width at most 8950g2 + 1796g such that every path of length at
most 895 in G intersects at most three parts in Z. By Theorem 3.1, G′ has
a 222-blocking partition R′ with width at most 10∆80(3612 ∆452 + 900).
Let R := R′ ∪ Z, which is a connected partition of G with width at most
max{10∆80(3612 ∆452 + 900), 8950g2 + 1796g}. We claim that R is 894-
blocking. Consider an R-clean path P in G. Then P intersects at most
three parts in Z. Let W := V (P ) ∩ V (Z). Since P is R-clean, |W | ⩽ 3.
Therefore, P −W has at most four components, each of which is an R′-clean
path in G′. Since each R′-clean path in G′ has length at most 222, it follows
that P has length at most 4 · 222 + 6 = 894. Hence R is 894-blocking. □

8. Reflections on Blocking Partitions

This section considers which graph classes have ℓ-blocking partitions of
width at most c for some constants ℓ, c. Bounded maximum degree is nec-
essary, even for trees.

Proposition 8.1. — If every tree with maximum degree ∆ has an ℓ-
blocking partition of width at most c, then c ⩾ ∆.

Proof. — Let T be the complete (∆ − 1)-ary rooted tree of height ℓ + 1.
So T has maximum degree ∆ and every root-to-leaf path has length ℓ + 1.
Let R be an ℓ-blocking partition of T of width at most c. For the sake of
contradiction, suppose c < ∆. Then every non-leaf vertex of T has a child
that belongs to a different part in R. So T contains a root-to-leaf path
P where every pair of consecutive vertices belong to different parts in R.
Moreover, no two non-consecutive vertices in P belong to the same part,
since each part in R is connected. Hence P is an R-clean path of length
ℓ + 1, which is a contradiction. □

On the other hand, bounded maximum degree is not enough.
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Proposition 8.2. — There are no constants c, ℓ ∈ N such that every
4-regular graph has an ℓ-blocking partition of width at most c.

Proof. — Suppose for the sake of contradiction that every 4-regular graph
has an ℓ-blocking partition of width at most c. Erdős and Sachs [20] showed
that for any integers ∆, g ⩾ 3 there is a ∆-regular graph with girth at least
g. Let G be a 4-regular n-vertex graph with girth g ⩾ c + ℓ + 2. Consider
an ℓ-blocking partition R of G with width at most c. Say that an edge
uv ∈ E(G) is red if u, v ∈ V for some V ∈ R, otherwise it is blue. Since
g > c, each part V ∈ R induces a tree, so the total number of red edges is
less than n. Thus the number of blue edges is more than |E(G)| − n = n.
Hence there is a cycle C in G that consists of blue edges, which has length
at least g ⩾ ℓ + 2. Therefore C contains a path P of length ℓ + 1 that
consists of blue edges. If distinct vertices v, w in P are in the same part in
R, then G contains a cycle of length at most c + ℓ, which contradicts the
choice of g. Hence P is R-clean, which is a contradiction. □

Proposition 8.2 says that for a graph class to admit bounded blocking
partitions, some structural assumption in addition to bounded degree is
necessary. Theorem 3.1 shows that bounded Euler genus is such an assump-
tion. We now show that bounded treewidth is another such assumption.

Theorem 8.3. — Every graph G has a 2-blocking partition with width
at most

1350(tw(G) + 1)(∆(G))2.

The proof of Theorem 8.3 relies on a new lemma concerning tree-
partitions. We say that a rooted T -partition (Bx : x ∈ V (T )) of a graph
G is detached if for every non-root node y ∈ V (T ) with parent x ∈ V (T ),
each vertex in By is adjacent to at most one component of G[Bx].

Lemma 8.4. — Every graph G has a detached T -partition of width at
most 90(tw(G) + 1)∆(G), for some tree T with ∆(T ) ⩽ 15∆(G)

The proof of Lemma 8.4 builds on a clever argument due to a referee
of a paper by Ding and Oporowski [8] showing that graphs with bounded
treewidth and bounded maximum degree have tree-partitions of bounded
width (see also [40, 10]); see Appendix A for the details.

Proof of Theorem 8.3. — By Lemma 8.4, G has a detached T -partition
(Bx : x ∈ V (T )) with width at most 90(tw(G) + 1)∆(G) for some tree T

with ∆(T ) ⩽ 15∆(G) and root z ∈ V (G). Let (V0, V1, . . . ) be a bfs-layering
of G where V0 = {z}. We say a part Bx is in level i if x ∈ Vi. Colour the
edges of G as follows: each edge with two ends in one part Bx is coloured
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red, and each edge with one end in a part Bx at level i and one end in a part
By at level i+1 is coloured red if i is odd and blue if i is even. Let R be the
connected partition of G where each part is the vertex-set of a component
of the spanning subgraph of G consisting of the red edges. Observe that the
vertex-sets of the components of G[Bz] are in R. Moreover, for every other
part X ∈ R, there is a node x ∈ V (T ) with children y1, . . . , ydegT (x)−1 ∈
V (T ) such that X ⊆ Bx ∪ By1 ∪ · · · ∪ BydegT (x)−1 . Since every node in
V (T ) \ {z} has at most 15∆(G) − 1 children, it follows that each part in
R has at most (15∆(G)) · (90(tw(G) + 1)∆(G)) ⩽ 1350(tw(G) + 1)(∆(G))2

vertices.
For the sake of contradiction, suppose G contains an R-clean path P of

length at least 3. Since P is R-clean, its edges are blue and so all edges of
P are between levels i and i + 1 for some even i, and all the vertices of P

at level i belong to one part Bx. Since each edge of P is blue, the vertices
of P alternate between vertices in Bx and vertices that belong to parts
that are indexed by the children of x. Since P has length at least 3, P has
an internal vertex w that belongs to By for some child y of z. Since P is
R-clean, w is adjacent to at least two components of G[Bx], contradicting
(Bx : x ∈ V (T )) being a detached tree-partition. So every R-clean path in
G has length at most 2, as required. □

9. Open Problems

We conclude with some open problems.

Open Problem 1. — What is the minimum integer ℓ for which there
exists a function f such that every planar graph G has an ℓ-blocking parti-
tion with width at most f(∆(G))? We have proved that ℓ ⩽ 222, although
we have chosen to simplify our proof rather than optimise the constant.

Open Problem 2. — Can Theorem 1.5 be proved with f bounded by
a polynomial function of d, r, s? Our proof gives f(d, r, s) ⩽ (sd)O(r!).

Consider the following open problems for k-planar graphs.

Open Problem 3. — What is the minimum integer c such that there
is a function f for which every k-planar graph G is contained in H ⊠ P ⊠
Kf(k)where tw(H) ⩽ c? We know that 3 ⩽ c ⩽ 15 288 899.

Open Problem 4. — Is there a constant c and a polynomial function
f such that every k-planar graph G is contained in H ⊠ P ⊠ Kf(k) where
tw(H) ⩽ c? Our proof gives f(k) ⩽ 2O(⌊k/2⌋!).
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Questions analogous to Open Problems 3 and 4 can be asked for other
natural classes.

Finally, consider what other graph classes have an ℓ-blocking partitions?

Open Problem 5. — Does there exist integers ℓ, c ⩾ 1 such that every
graph with maximum degree at most 3 has an ℓ-blocking partition of width
at most c?

Open Problem 6. — For every t ∈ N, does there exist kt ∈ N and
a function ft such that every Kt-minor-free graph G has a kt-blocking
partition with width at most ft(∆(G))?
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Appendix A. Detached Tree-Partitions

This appendix is devoted to the proof of Lemma 8.4. Recall that a rooted
tree-partition (Bx : x ∈ V (T )) of a graph G is detached if for every non-root
node y ∈ V (T ) with parent x ∈ V (T ), each vertex in By is adjacent to at
most one component of G[Bx].

Lemma A.1. — For any graph G, for any non-empty set S ⊆ V (G),
there exists a set X such that:

• S ⊆ X ⊆ V (G);
• |X| ⩽ 2|S| − 1; and
• each vertex in G−X is adjacent to at most one component of G[X].

Proof. — Consider the following algorithm: Initialise i := 0 and S0 := S.
While there is a vertex v in G − Si adjacent to at least two components of
G[Si], let Si+1 := Si ∪ {v} and i := i + 1.

Say this algorithm stops at i = m. Let X := Sm. Then each vertex in
G−X is adjacent to at most one component of G[X]. Let cj be the number
of components of G[Sj ]. By construction, |Sj | = |S| + j and cj ⩽ c0 − j ⩽
|S|−j for each j ∈ {0, . . . , m}. In particular, if m ⩾ |S|−1 then c|S|−1 = 1.
Thus m ⩽ |S| − 1 and |X| ⩽ |S| + m ⩽ 2|S| − 1. □

The following lemma is the core of the proof of Lemma 8.4.

Lemma A.2. — For k, d ∈ N, for any graph G with tw(G) ⩽ k − 1 and
∆(G) ⩽ d, for any set S ⊆ V (G) with 5k ⩽ |S| ⩽ 30kd, there exists a
detached tree-partition (Bx : x ∈ V (T )) of G with root z ∈ V (T ) such
that:

• ∆(T ) ⩽ 15d;
• |Bx| ⩽ 90kd for each x ∈ V (T );
• S ⊆ Bz;
• |Bz| ⩽ 3|S| − 5k; and
• degT (z) ⩽ |S|

2k − 1.

Proof. — We proceed by induction on |V (G)|.
Case 1. |V (G − S)| ⩽ 90kd: Let T be the tree with V (T ) = {y, z} and

E(T ) = {yz}. Note that ∆(T ) = 1 ⩽ 15d and degT (z) = 1 ⩽ |S|
2k − 1.

By Lemma A.1, there exists a set Bz ⊆ V (G) such that S ⊆ Bz, |Bz| ⩽
2|S| − 1 ⩽ 3|S| − 5k ⩽ 90kd and every vertex in V (G) − Bz is adjacent
to at most two components of G[Bz]. Set By := V (G) − Bz. Then |By| ⩽
|V (G) − S| ⩽ 90kd and every vertex in By is adjacent to at most one
component of G[Bz]. Hence (Bx : x ∈ V (T )) is the desired detached tree-
partition of G.
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Now assume that |V (G − S)| ⩾ 90kd.
Case 2. 5k ⩽ |S| ⩽ 15k: By Lemma A.1, there exists a set Bz ⊆

V (G) such that S ⊆ Bz, |Bz| ⩽ 2|S| ⩽ min{3|S| − 5k, 30k} and every
vertex in V (G) − Bz is adjacent to at most one component of G[Bz]. Let
S′ :=

⋃
{NG(v) \ Bz : v ∈ Bz}. So |S′| ⩽ d|Bz| ⩽ 30kd. If |S′| < 5k

then add 5k − |S′| vertices from V (G − Bz − S′) to S′, so that |S′| =
5k. This is well-defined since |V (G − Bz)| ⩾ 90kd − 30k ⩾ 5k, implying
|V (G − Bz − S′)| ⩾ 5k − |S′|. By induction, there exists a detached tree-
partition (Bx : x ∈ V (T ′)) of G − Bz with root z′ ∈ V (T ′) such that:

• |Bx| ⩽ 90kd for each x ∈ V (T ′);
• ∆(T ′) ⩽ 15d;
• S′ ⊆ Bz′ ;
• |Bz′ | ⩽ 3|S′| − 5k ⩽ 90kd; and
• degT ′(z′) ⩽ |S′|

2k − 1 ⩽ 15d − 1.
Let T be the rooted tree obtained from T ′ by adding a new root z adjacent
to z′. So (Bx : x ∈ V (T )) is a tree-partition of G with width at most
max{90kd, |Bz|} ⩽ max{90kd, 30k} = 90kd. By construction, degT (z) =
1 ⩽ |S|

2k − 1 and degT (z′) = degT ′(z′) + 1 ⩽ (15d − 1) + 1 = 15d. Every
other vertex in T has the same degree as in T ′. Hence ∆(T ) ⩽ 15d, as
desired. Finally, since (Bx : x ∈ V (T ′)) is detached and every vertex in
V (G) − Bz is adjacent to at most one component of G[Bz], it follows that
(Bx : x ∈ V (T )) is also detached.

Case 3. 15k ⩽ |S| ⩽ 30kd: By the separator lemma of Robertson and
Seymour [38, (2.6)], there are induced subgraphs G1 and G2 of G with
G1 ∪ G2 = G and |V (G1 ∩ G2)| ⩽ k, where |S ∩ V (Gi)| ⩽ 2

3 |S| for each
i ∈ {1, 2}. Let Si := (S ∩ V (Gi)) ∪ V (G1 ∩ G2) for each i ∈ {1, 2}.

We now bound |Si|. For a lower bound, since |S∩V (G1)| ⩽ 2
3 |S|, we have

|S2| ⩾ |S \ V (G1)| ⩾ 1
3 |S| ⩾ 5k. By symmetry, |S1| ⩾ 5k. For an upper

bound, |Si| ⩽ 2
3 |S| + k ⩽ 20kd + k ⩽ 30kd. Also note that |S1| + |S2| ⩽

|S| + 2k.
We have shown that 5k ⩽ |Si| ⩽ 30kd for each i ∈ {1, 2}. Thus we

may apply induction to Gi with Si the specified set. Hence there exists a
detached tree-partition (Bi

x : x ∈ V (Ti)) of Gi with root zi ∈ V (Ti) such
that:

• |Bi
x| ⩽ 90kd for each x ∈ V (Ti));

• ∆(Ti) ⩽ 15d;
• Si ⊆ Bzi

;
• |Bzi

| ⩽ 3|Si| − 5k; and
• degTi

(zi) ⩽ |Si|
2k − 1.
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Let T be the rooted tree obtained from the disjoint union of T1 and T2 by
identifying z1 and z2 into a new root vertex z. Let Bz := B1

z1
∪ B2

z2
. Let

Bx := Bi
x for each x ∈ V (Ti) \ {zi}. Since G = G1 ∪ G2 and V (G1 ∩ G2) ⊆

B1
z1

∩ B2
z2

⊆ Bz, we have that (Bx : x ∈ V (T )) is a tree-partition of G. By
construction, S ⊆ Bz and since V (G1 ∩ G2) ⊆ Bi

zi
for each i,

|Bz| ⩽ |B1
z1

| + |B2
z2

| − |V (G1 ∩ G2)|
⩽ (3|S1| − 5k) + (3|S2| − 5k) − |V (G1 ∩ G2)|
= 3(|S1| + |S2|) − 10k − |V (G1 ∩ G2)|
⩽ 3(|S| + 2|V (G1 ∩ G2)|) − 10k − |V (G1 ∩ G2)|
⩽ 3|S| + 5|V (G1 ∩ G2)| − 10k

⩽ 3|S| − 5k

< 90kd.

Every other part has the same size as in the tree-partition of G1 or G2. So
this tree-partition of G has width at most 90kd. Note that

degT (z) = degT1(z1) + degT2(z2) ⩽ ( |S1|
2k − 1) + ( |S2|

2k − 1)

= |S1|+|S2|
2k − 2

⩽ |S|+2k
2k − 2

= |S|
2k − 1

< 15d.

Every other node of T has the same degree as in T1 or T2. Thus ∆(T ) ⩽ 15d.
So it remains to show that (Bx : x ∈ V (T )) is detached. By induction, it
follows that for every node x ∈ V (T )\{z} with child y, every vertex in By is
adjacent to at most one component of G[Bx]. Now suppose that a vertex v ∈
V (G) − Bz is adjacent to at least two components of G[Bz]. Let u, w ∈ Bz

be neighbours of v in G that belong to distinct components of G[Bz]. Since
(Bi

x : x ∈ V (Ti)) is a detached tree-partition of Gi, it follows that either
u ∈ V (G1) \ V (G2) and w ∈ V (G2) \ V (G1), or u ∈ V (G2) \ V (G1) and
w ∈ V (G1)\V (G2). As such, v ∈ V (G1)∩V (G2), but this is a contradiction
since V (G1)∩V (G2) ⊆ Bz. So (Bx : x ∈ V (T )) is detached, which completes
the proof. □

Proof of Lemma 8.4. — First suppose that |V (G)| < 5(tw(G) + 1). Let
T be the 1-vertex tree with V (T ) = {x}, and let Bx := V (G). Then (Bx :
x ∈ V (T )) is the desired detached tree-partition, since |Bx| = |V (G)| <

5(tw(G) + 1) ⩽ 90(tw(G) + 1)∆(G) and ∆(T ) = 0 ⩽ 15∆(G). Now assume
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that |V (G)| ⩾ 5(tw(G) + 1). The result follows from Lemma A.2, where S

is any set of 5(tw(G) + 1) vertices in G. □
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