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SHORT AND LOCAL TRANSFORMATIONS BETWEEN
(∆ + 1)-COLORINGS
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Abstract. — Recoloring a graph is about finding a sequence of proper colorings
of this graph from an initial coloring σ to a target coloring η. Adding the constraint
that each pair of consecutive colorings must differ on exactly one vertex, one asks:
Is there a sequence of colorings from σ to η? If yes, how short can it be?

In this paper, we focus on (∆ + 1)-colorings of graphs of maximum degree ∆.
Feghali, Johnson and Paulusma proved that, if both colorings are unfrozen (i.e. if
we can change the color of at least one vertex), then a recoloring sequence of length
at most quadratic in the size of the graph always exists. We improve their result
by proving that there actually exists a linear transformation (assuming that ∆ is
a constant).

In addition, we prove that the core of our algorithm can be performed locally.
Informally, this means that after some preprocessing, the color changes that a
given vertex has to perform only depend on the colors of the vertices in a constant
size neighborhood. We make this precise by designing of an efficient recoloring
algorithm in the LOCAL model of distributed computing.

1. Introduction

1.1. Graph Recoloring and configuration graph

A (proper) coloring of a graph is an assignment of colors to the vertices
such that no two neighbors have the same color. Given two colorings of
a given graph (referred to as the source and target colorings), we want to
recolor one into the other, that is, start from the source coloring and change
the color of one vertex at a time, in order to reach the target coloring, with
the guarantee that the coloring is proper at all steps.

For a given graph G, and an integer k, the two classic recoloring questions
are:
Keywords: Graph reconfiguration, recoloring, linear transformation, unfrozen colorings,
distributed algorithms.
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Question 1.1. — Is it possible to find a recoloring between any pair of
k-colorings of G?

Question 1.2. — When it is possible, how many steps are needed?

We can restate these questions from an alternative point of view us-
ing the configuration graph. For a given graph G and an integer k, the
k-configuration graph G(G, k) has a vertex for each proper k-coloring of G,
and an edge between every pair of colorings that differ on exactly one vertex
of G. Finding a recoloring sequence between two colorings is then the same
as finding a path in the configuration graph. From this point of view, Ques-
tion 1.1 becomes: Is the configuration graph of k-colorings connected? and
Question 1.2 becomes: What is the diameter of this configuration graph?

Typical behavior when the number of colors varies. For any given
graph, the answer to the two questions above varies with the total number
k of colors (the palette size). The typical behavior one can expect can be
described by a series of regimes:

(1) With too few colors, proper colorings simply do not exist, hence we
cannot discuss recoloring.

(2) With few colors, proper colorings exist, but for most pairs of color-
ings, recoloring is impossible. (That is, the configuration graph has
many small connected components.)

(3) With a larger palette, we reach a regime where recoloring is feasible
in general, but it can take many steps. (That is, the configuration
graph is connected, or not far from being connected, but it has large
diameter.)

(4) By increasing the number of colors, we make the recoloring se-
quences shorter and shorter.

(5) On the extreme, with a large enough number of colors, a recolor-
ing process exists where every vertex has its color changed only a
constant number of times.

1.2. Palette size as a function of the maximum degree

Many works are devoted to understand precisely when the changes of
regimes occur for specific classes of graphs, or for different values of some
graph parameters. The best-studied parameters are the degeneracy of the
graph and the maximum degree. In this paper, we focus on graphs of max-
imum degree ∆, where the palette size is a function of ∆. This setting has
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attracted a lot of interest, not only in the graph theory community, but
also in the random sampling and statistical physics communities. (We will
mention some results from this perspective now, but more can be found in
the Related Work section.)

Previous work has established that the most important change of regime
happens between the palette sizes ∆ + 1 and ∆ + 2 . For every k ⩾ ∆ + 2,
the k-configuration graph is connected, that is, any coloring can be reached
from any other by vertex recolorings. Moreover, the diameter of the config-
uration graph is at most 2n [13]. Note that the diameter of the configura-
tion graph is always at least linear in n, since if we consider two colorings
where colors are permuted, all the vertices have to be recolored at least
once. An important conjecture in the area of random sampling is that the
mixing time of the Markov chain of the (∆ + 2)-colorings of any graph is
O(n log n). In other words, given any (∆ + 2)-coloring of a graph, if we
perform a (lazy) random walk on the set of proper (∆ + 2)-colorings, we
should sample (almost) at random a coloring after O(n log n) steps.(1)

In contrast, for (∆ + 1) colors, the configuration graph is disconnected,
in general. At first sight, this is a huge step for just one color less: we go
from a case where we could navigate between colorings in the fastest way,
even at random somehow, to a case where we cannot even reach some col-
orings from some others. The landscape is actually more subtle. Indeed,
Feghali, Johnson, and Paulusma [23] proved that the configuration graph
of the (∆ + 1)-colorings of a graph consists of a set of isolated vertices
plus a unique component containing all the other colorings. Note that iso-
lated vertices in the configuration graph correspond to colorings that are
frozen, in the sense that no change of colors can be performed. In addition,
Bonamy, Bousquet, and Perarnau [5] proved that, if G is connected, then
the proportion of frozen (∆+1)-colorings of G is exponentially smaller than
the total number of colorings. Therefore, the configuration graph consists
of a giant component of small diameter plus isolated vertices, and a long
enough random walk can visit almost all (∆ + 1)-colorings.

Now, the key question is: What is the diameter of the giant component?
If it is small as a function of n, then we are in a situation close to the one
of ∆ + 2 colors, with just some special cases which are frozen colorings. If
it is large, then there is a real change of regime: not only are there some

(1) This question is still widely open, and the best known upper bound on the number of
colors to obtain a polynomial mixing time is ( 11

6 −ϵ)∆ [18], slightly improving a classical
result of Vigoda [32].
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isolated vertices, but it is hard to navigate between the colorings of the
giant component.

In their influential paper, Feghali, Johnson, and Paulusma [23] proved an
upper bound of O(n2) on the diameter of the unique non-trivial component.
That is, the configuration graph does not have a very large diameter, but we
do not know whether it is as small as in the case of ∆+2 colors. Actually, we
know that Θ(n2) is the best possible for paths, thanks to a specific lower
bound construction for 3-colorings of paths [6]. But what about graphs
that are not paths? For general graphs, the only known lower bound is
the trivial Ω(n), leaving open whether there is something special about
∆ = 2 or whether the lower bound could be generalized. Our first theorem
establishes that we are in the first situation: as soon as ∆ is at least 3, the
diameter of the non-trivial component drops to Θ(n) (for constant ∆).

Theorem 1.3. — Let G be a connected graph with ∆ ⩾ 3 and σ, η be
two unfrozen k-colorings of G with k ⩾ ∆ + 1. Then we can transform σ

into η with a sequence of at most O(∆c∆n) single vertex recolorings, where
c is a constant.

In other words, we lower the upper bound on the diameter of the non-
trivial component from O(n2) to f(∆) · n. This brings (∆ + 1)-colorings
in the category of colorings for which there exists linear transformations,
a topic that has received considerable attention in recent years (see Sec-
tion 1.3).

An interesting direction for future work is to determine whether we can
reduce the dependency in terms of ∆. We actually have no lower bound
that ensures that a dependency on ∆ is necessary. In other words, we leave
the following question open:

Question 1.4. — Given α, β two unfrozen (∆ + 1)-colorings, is it pos-
sible to transform α into β in O(n) steps independent of ∆?

Finally, note that at some steps of the proof, we can reduce the expo-
nential dependency on ∆ into a polynomial one by adapting a result of
Bousquet and Heinrich [11], but we did not succeed to do it at every step.
We thus decided to keep the proof as simple as possible.

1.3. Configuration graphs of linear diameter

An active line of research consists in determining which number of colors
ensures that the diameter of the configuration graph is linear, in various
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settings beyond the bounded degree case. In addition to the optimality, the
focus on this regime is motivated by the fact that having a linear diameter is
a necessary condition to get an almost linear mixing time for the underlying
Markov chain.

Theorem 1.3 is a contribution in this line of research since we prove
that the configuration graph consists of isolated vertices plus, possibly, a
component of linear diameter. This is, as far as we know, the first result
which provides a linear diameter on the components of the configuration
graph while the configuration graph itself is not necessarily connected.

An important result in this perspective is by Bousquet and Perarnau [12]
who proved that the diameter of the k-configuration graph is O(dn) as
long as k ⩾ 2d + 2, where d denotes the degeneracy of the graph. The
proof of this result proceeds by induction, which is a classic approach in
reconfiguration, but unusual for linear diameters, where one is often forced
to use other techniques, such as discharging proofs [3, 11], Thomassen-like
approaches [20], or buffer sliding [9].

Our proof of Theorem 1.3 introduces a new proof technique to ensure that
the reconfiguration graph admits a linear diameter, which is of independent
interest and could probably be used for other problems. The technique is
related to the notions of parallelization and locality for reconfiguration, that
we introduce in the next subsections. These have been studied recently by
the distributed computing community, but as far as we know, had not been
used in the more classic (sequential) reconfiguration world.

1.4. Parallel recoloring

Recoloring in parallel and dependencies between recoloring
steps. Consider a recoloring instance where the source and the target col-
orings differ only on an independent set. In this instance, any sequence
created by iteratively assigning its target color to a vertex that does not
have it already, is a valid one. The order can be chosen arbitrarily, because
there is no dependency between the color changes: a vertex does not need
one of its neighbors to first change its color in order to be able to change
its own.

A way to capture this absence of dependency is to note that we can
parallelize the recoloring: we can just take all the vertices that do not have
their target colors and recolor them in parallel. Note that we need to be
careful with the notion of parallel recoloring: after all, for any recoloring
task, we could just say “recolor all vertices in parallel”, but this would not
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make sense, since we simultaneously recolor adjacent vertices. To make it
meaningful, the standard definition consists in allowing parallel recoloring
only for vertices that are not adjacent.(2)

In other words, at any given step of a parallel recoloring schedule, the
vertices that change color form an independent set. From such a parallel
schedule, it is easy to derive a sequential recoloring sequence: decompose
any parallel step by performing all the individual vertex recolorings one
after the other.

Now, one might wonder if, in general, allowing parallel recoloring dra-
matically reduces the number of steps or not. Let us consider two examples
with very different behaviors.

Paths with ∆ + 1 colors. Consider the case of paths with 3 colors
(note that ∆ = 2 for paths). In particular, consider a source coloring of
the form 1,2,3,1,2,3... and a target coloring of the form 2,3,1,2,3,1... In
this case, it is easy to see that at step i, only the vertices at distance at
most i from an endpoint can change color, even if we allow parallelization.
Therefore, the recoloring must be very sequential, and we will use at least
Ω(n) parallel steps. In other words, there are strong dependencies between
color changes(3) .

General graphs with 2∆+2 colors. Now for 2∆+2 colors, the behav-
ior is completely different. We will illustrate this by designing an algorithm
producing a very short parallel schedule. The algorithm is based on the idea
of partitioning the palette of colors into two sub-palettes of size ∆+1 each,
palette A (with colors a1, ..., a∆+1) and palette B (with colors b1, ..., b∆+1).
The key observation is: in any proper coloring, for any vertex with a color
from palette A (resp. B), we can find a new non-conflicting color in palette
B (resp. A), because the sub-palettes are large enough. See Algorithm 1.

Note that the color changes happening at the same step are performed
by sets of vertices that are independent, since they are color classes either
in the source or the target coloring.

This algorithm produces a parallel schedule that uses 4(∆+1) recoloring
steps, which is very small when compared with the (at least) n steps that are
necessary for sequential recoloring in general, and for the parallel recoloring
of paths in the previous paragraph.

This naturally leads to the following third question.

(2) We will review the literature on distributed recoloring later in the paper.
(3) Actually in that case, one can prove that a recoloring sequence needs Θ(n2) single
vertex recolorings and that we can recolor it with Θ(n) parallel steps.
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Algorithm 1 Generating a parallel schedule for 2∆ + 2 colors.
for i from 1 to ∆ + 1 do

At Step i: every vertex with source color bi takes a new non-conflicting
color in palette A.
for i from 1 to ∆ + 1 do

At Step i + ∆ + 1: every vertex with target color bi takes its target
color.
for i from 1 to ∆ + 1 do

At Step i + 2∆ + 2: every vertex with target color ai takes a new
non-conflicting color in palette B.
for i from 1 to ∆ + 1 do

At Step i + 3∆ + 3: every vertex with target color ai takes its target
color.

Question 1.5. — When recoloring is possible, how many parallel steps
are needed?

Parallel recoloring with (∆+1) colors. When expressed as a parallel
schedule, the sequence of Feghali, Johnson, and Paulusma [23] takes O(n)
parallel steps, and this cannot be improved. Indeed, consider the power of
a path (which can be chosen of arbitrarily large degree): we can have an
almost frozen coloring except on the boundaries (as in the case of paths
with 3 colors), therefore, in order to recolor a vertex in the middle, we first
have to recolor a long chain of vertices starting on the border of the graph.

We prove that we can have a parallel recoloring schedule with a very
specific form: first a sequential schedule of linear length and then a very
short schedule using parallelism.

Theorem 1.6 (A more precise version of Theorem 1.3). — There exists
a function f , such that for any connected graph of maximum degree ∆ ⩾ 3
and k ⩾ ∆ + 1, we can transform any unfrozen k-coloring into any other
with a sequence of:

• at most O(n) single vertex recolorings followed by,
• a parallel schedule of length at most O(f(∆)).

Actually our result is even better since we can ensure that, if, in the
initial and target colorings, for each vertex there is an unfrozen vertex
close enough, we can simply remove the first part and only recolor with a
parallel schedule of length at most O(f(∆)).
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1.5. Distributed algorithms and locality

From parallel recoloring to locality. When studying Algorithm 1,
it appears that not only does it produce a short parallel schedule, but it
is also very local. Let us explain what we mean by this. Let the recoloring
schedule of a given vertex be the series of color changes it has to take,
each along with the appropriate time step. We claim that the recoloring
schedule of any fixed vertex is independent of the vertices that are outside
a ball of radius 4(∆ + 1) around it. That is, changing the source/target
colors of vertices far away, or even the topology of the graph far from the
vertex would not change anything from the viewpoint of the vertex.

Let us quickly prove this claim. We prove by induction that: for every
vertex v, for every j ∈ [1, 4(∆ + 1)], the possible color change of v at step j

only depends on the ball of radius i around v (including source and target
colors in this ball). At step j = 1, vertices with source color b1 change to a
non-conflicting color in palette A. This only depends on the source colors
of the neighbors of v, that is, on the ball of radius 1 around v. Assume
now that the hypothesis is true for some j < 4(∆ + 1), and consider a
change of color at step j + 1 on a vertex v. If j + 1 is in [∆ + 2, 2∆ + 2]
or [3∆ + 4, 4∆ + 4], the hypothesis holds, because the color change only
depends on the target color of v. Otherwise, the color change depends on
the current colors of the neighbors of v (which do not change at step j + 1,
by construction). Hence, the color change of v depends on the vertices that
are in the balls of radius j around its neighbors, that is, in the ball of radius
j + 1 around itself. This proves the claim.

Locality and LOCAL model. Notions of locality with the flavor de-
scribed above have been studied for a long time in the theory of distributed
computing, in what is called the LOCAL model. There, a typical question
is: if we let every vertex know its neighborhood at distance ℓ, its initial and
target colors, can it choose an output such that the collection of individual
outputs makes sense globally? In our setting, this translates to: if every
vertex knows its neighborhood at distance ℓ, can it produce a recoloring
schedule for itself, such that we get a consistent parallel schedule when
considering all the vertices together? This distance ℓ corresponds to the
number of rounds in the LOCAL model, and can be called the locality of
the task. Hence, we have the following question:

Question 1.7. — What is the locality of recoloring?

Our example of 2∆+2 colors was useful to introduce both the notions of
parallel schedule length and of locality, but it can be misleading because the
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two are basically equal in that case. This is because, at each step, a vertex
can check the colors of its neighbors and update its own, performing both
the computation of the schedule and the application of it. In general, there
is no such equality. It can be that the locality is larger, because the vertices
need to look far to be able to produce a proper schedule (in particular, with
no two adjacent vertices changing color at the same time). It can also be
that the schedule is larger, for example it can be larger than n (when the
recoloring sequence is super polynomial for instance) whereas the locality
can never be larger than n.

We will come back to this when defining the LOCAL model properly in
Section 2.

Back to ∆+1 colors. In general, when we consider two unfrozen (∆+1)-
colorings σ and η of a graph G, possibly there exists no short parallel
schedule recoloring σ to η. For example, if σ has a unique unfrozen vertex
v whereas all vertices are unfrozen in η, the “non-frozenness” has to be
propagated edge by edge to the rest of the graph, similarly as for 3-colored
paths. Moreover, to compute its own schedule, a vertex would need to know
its distance to the unfrozen vertex in σ, inducing a linear number of rounds
for the furthest vertex from v. We prove that this is basically the only case
where the transformations between (∆ + 1)-colorings have to be global.
That is, if unfrozen vertices are well-spread, then we can actually compute
a recoloring sequence locally. Our second main theorem is the following:

Theorem 1.8. — Let k, ∆, r ∈ N such that k > ∆ ⩾ 3. There exists
three constants c, c′, c′′ such that, for any graph G of bounded degree ∆, and
σ, η two k-colorings of G which are r-locally unfrozen(4) , we can transform
σ into η with a parallel schedule of length at most O(kc∆+∆c′

r). Moreover,
this schedule can be computed in:

• O(∆c′′ + log∗ n + r) rounds if k ⩾ ∆ + 2.
• O(∆c′′ + log2 n · log2 ∆ + r) rounds if k = ∆ + 1.

Informally, the number of rounds we need in the LOCAL model to pro-
vide a distributed recoloring sequence measures how well we need to un-
derstand the graph globally to provide a recoloring sequence.

The log∗ n (or log2 n) term in the number of rounds arises from comput-
ing a maximal independent set at distance Ω(1) (or a ∆+1 coloring). If we
are given such colorings and independent sets, then the number of rounds
is independent of n.

(4) For a formal definition of LOCAL model and of r-locally unfrozen colorings, the
reader is referred to Definition 2.1.
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Impact and open questions for distributed recoloring. Our results
are also interesting from the viewpoint of distributed computing, since they
improve on the state of the art of distributed recoloring in several ways.
Theorem 1.8 directly improves some results of [7] on distributed recolor-
ing. One problem studied in [7] consists in recoloring 3-colored graphs of
maximum degree 3 with the help of an extra color. The authors provide an
algorithm that finds a parallel schedule of length O(log n) in a polyloga-
rithmic number of rounds in the LOCAL model. Theorem 1.8 implies that
a constant length schedule can be found in O(log∗ n) rounds (and it holds
even if we start from an arbitrary locally unfrozen 4-colorings instead of
3-colorings plus an additional color). Theorem 1.8 also directly solves two
open questions from [7]:

• The first question is about the complexity of finding a schedule to
recolor a ∆-coloring with an extra color. Since these colorings can be
seen as unfrozen (∆ + 1)-colorings, Theorem 1.8 gives an algorithm
that finds a parallel schedule of length f(∆) in O(F (∆) log∗ n) com-
munication rounds, where f and F are functions with no hidden
dependencies in n.

• The second question deals with the case of 4-colored toroidal grids
with an extra color. We provide an algorithm with a constant length
schedule after O(log∗ n) rounds.

We leave as an open problem whether a schedule can be found even more
quickly. In particular, we conjecture that, in the case of toroidal grids, such
a schedule could be found in O(1) communication rounds, by using the
input and target colorings as symmetry-breaking tools. More generally, we
were not able to answer that question:

Question 1.9. — Is it the case that computing a recoloring schedule in
the LOCAL model between any pair of 28-locally unfrozen (∆+1)-colorings
requires ω(1) communication rounds?

Note that a lower bound result of this flavor can be found in [15] for
the problem of maximal independent set reconfiguration, but we did not
manage to adapt it to our setting.

1.6. Related work

In this section, we focus on recoloring literature. For references about
the larger field of reconfiguration, the reader is referred to the two recent
surveys on the topic [28, 27].
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Markov chain motivation. A major motivation to study the config-
uration graph of colorings is the importance of this object for random
sampling. The diameter of the configuration graph is a straightforward
lower bound on the mixing time of the underlying Markov chain, which
corresponds to sampling colorings by local changes. Since proper colorings
correspond to states of the anti-ferromagnetic Potts model at zero temper-
ature, Markov chains related to graph colorings have received considerable
attention in statistical physics and many questions related to the ergodicity
or the mixing time of these chains remain widely open (see e.g. [18, 24]).

Recoloring graphs with other bounded parameters. So far we
have considered graphs where the degree is bounded, since it is the setting of
our results. Let us quickly mention results in classes where other parameters
are bounded. Bonsma and Cereceda [8] proved that there exists a family
G of graphs and an integer k such that, for every graph G ∈ G, there exist
two k-colorings whose distance in the k-configuration graph is finite and
super-polynomial in n. Cereceda conjectured that the situation is different
for degenerate graphs. A graph G is d-degenerate if any subgraph of G

contains a vertex of degree at most d. In other words, there exists an
ordering v1, . . . , vn of the vertices such that for every i ⩽ n, the vertex
vi has at most d neighbors in vi+1, . . . , vn. It was shown independently
in [21] and [17] that for any d-degenerate graph G and every k ⩾ d + 2,
the graph G(G, k) is connected. However, the (upper) bound on the k-
recoloring diameter given by these constructive proofs is O(cn) (where c

is a constant). Cereceda [16] conjectured that the diameter of G(G, k) is
O(n2), as long as k ⩾ d + 2. If correct, the quadratic function is tight, even
for paths or chordal graphs as proved in [6]. The best known upper bound
here is due to Bousquet and Heinrich [11], who proved that the diameter of
G(G, k) is in O(nd+1). The conjecture is known to be true for a few graph
classes, such as chordal graphs [6] and bounded treewidth graphs [4, 22].

Distributed recoloring. Distributed recoloring in the LOCAL model
was introduced in [7], and implicitly studied before in [29]. In [7], the
authors focus on recoloring 3-colored trees, subcubic graphs and toroidal
grids, and in [29], the focus is on transforming a (∆ + 1)-coloring into a
∆-coloring. More recently, [10] designed efficient distributed algorithms for
recoloring chordal and interval graphs. A few reconfiguration problems dif-
ferent from coloring have been studied in the distributed setting, including
vertex cover [14], maximal independent sets [15], and spanning trees [26].

Innov. Graph Theory 2, 2025, pp. 119–156



130 N. Bousquet, L. Feuilloley, M. Heinrich & M. Rabie

1.7. Organization of the paper

This introduction described the motivation and big picture. In Section 2,
we give the definitions needed in the rest of the paper. In Section 3, we
sketch the proof techniques. Sections 4 and 5 provide the full proofs of the
results.

2. Preliminaries

Classic graph definitions. All along the paper G = (V, E) denotes
a graph, n is the number of vertices (i.e. n = |V |), and k is a positive
integer. For standard definitions and notations on graphs, we refer the
reader to [19]. Let G be a graph and v be a vertex of G. We denote by
N(v) the set of neighbors of v, that is the set of vertices adjacent to v.
The degree of a vertex is the number of neighbors it has, and ∆(G) is the
maximum degree of G (often denoted ∆ for short). The set N [v], called the
closed neighborhood of v, denotes the set N(v) ∪ {v}. Given a set X, we
denote by N(X), the set (∪v∈XN(v))\X. The distance between u and v in
G is the length of a shortest path from u to v in G (by convention, it is +∞
if no such path exists), and it is denoted by d(u, v). For any integer r ∈ N,
we denote by B(v, r) the ball of center v and radius r, which is the set of
vertices at distance at most r from v. A vertex w belongs to the boundary
of B(v, r) if the distance between v and w is exactly r. The interior of a
ball B is the ball minus its boundary (i.e. B(v, r − 1) for a ball B(v, r),
with r > 0). An independent set at distance d is a set of vertices at pairwise
distance at least d.

Recoloring definitions. Let c be a coloring of G. A vertex v is frozen
in c if all the colors appear in N [v]. The coloring c is frozen if all the
vertices are frozen. Note that a frozen coloring is an isolated vertex of the
configuration graph.

Let α be a coloring of G, and X be a subset of vertices. We denote by
G[X] the subgraph of G induced by X, and by αX the coloring α restricted
to the vertices of X. We say that two colorings α and β agree on X if
αX = βX .

A recoloring step consists in changing the color of an unfrozen vertex
to one that does not appear in its neighborhood. In a recoloring by inde-
pendent sets, instead of changing the color of one vertex at each step, we
are allowed to change the colors of an independent set of unfrozen vertices
(while keeping a proper coloring).
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We introduce two new definitions: r-locally unfrozen colorings and lad-
ders.

Definition 2.1. — A coloring is r-locally unfrozen if, for every vertex
v, there exists an unfrozen vertex at distance at most r from v.

The last definition we introduce is motivated by the following remark.

Remark 2.2. — Consider an unfrozen vertex u in a (∆ + 1)-coloring of
a graph. If we change the color of u, then all its frozen neighbors become
unfrozen.

Indeed, before the change, for any frozen neighbor v of u, all the colors
appear exactly once in N [v] (because we consider ∆+1 colors). Thus, after
the change, the old color c of u does not appear anymore in N [v], and v has
two possible colors: its current color and c. Now, let us go one step further.
Suppose that v had another neighbor z, not adjacent to u, that was also
frozen at the beginning. The recoloring of u keeps z frozen, but then the
recoloring of v with color c unfreezes it. By iterating this process, we get
what we call a ladder.

Definition 2.3. — Given an induced path P where the first vertex in
the path is unfrozen, and all the other vertices are frozen, a ladder is a
portion of a recoloring sequence that recolors all the vertices of P one by
one.

Let u and w be the two endpoints of the path, u being the unfrozen
vertex. Note that at the end of the sequence, vertex w has changed color,
and it is unfrozen. Moreover, for every consecutive pair of vertices vivi+1
in the path, where vi appears first between u and w, the final color of vi+1
is the initial color of vi.

LOCAL model. The LOCAL model is a classic model of distributed
computing (see the books and surveys [1, 30, 31]).

Definition 2.4. — A distributed algorithmic problem in a graph
class C, consists, for every graph of G ∈ C, in a list of correct input-output
configurations: a pair of functions that assign a bit string to any vertex.

For example, the task of distributed k-coloring in general graphs consists
in the list of all the graphs, along with the input-output configurations,
where the first function assigns an empty string to every vertex (because
there is no input), and the second function corresponds to a proper k-
coloring of the graph.
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Given a distributed algorithmic problem, a legal input configuration is a
function f , for which there exists a function g, such that (f, g) is a correct
input-output configuration.

In order to avoid symmetry issues in distributed algorithms, we will
assume that the vertices have names. More formally:

Definition 2.5. — A graph on n vertices is equipped with unique iden-
tifiers if every vertex holds a distinct integer in [1, n2].

In the paper, this will only appear implicitly, since we will use known
distributed algorithms as black box, only those will require unique identi-
fiers.

Definition 2.6. — An algorithmic problem can be solved in r(n)
rounds in the LOCAL model in graphs equipped with unique identifiers
if the following two equivalent conditions hold. On any graph of the rele-
vant class with a legal input configuration:

(1) (Computational definition) If we suppose that the vertices start
with only the knowledge of their identifier, and can send messages
to their neighbors in synchronous rounds, then after r(n) rounds,
every vertex can output a bit string such that the input-output
configuration is correct with respect to the problem specification.

(2) (Locality definition) There exists a function ℓ that maps every ball
of radius r(n) (including identifiers) to a bit string, such that if
every vertex outputs the result of ℓ applied to its ball of radius
r(n), the input-output configuration is correct with respect to the
problem specification.

See [30] for the equivalence of the two definitions. Note that in n rounds
any problem can be solved; this is because in that number of rounds, every
vertex gets the full knowledge of the graph, and then can run a centralized
algorithm.

Distributed recoloring. In order to define a distributed version of re-
coloring, we introduce the notion of parallel recoloring step, and parallel
schedule.

Definition 2.7. — A parallel step, in recoloring, consists in changing
the color of an independent set of vertices between two proper colorings of
the graph. A parallel schedule is such as each recoloring step is parallel.

Distributed recoloring in the LOCAL model is defined as follows. Each
vertex v is given as input its initial color c0 and its target color cend. It
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outputs a schedule c0, c1, . . . , cℓ = cend of length ℓ, which is the list of colors
taken by v all along the transformation. The output is correct if this sched-
ule is achieved by recoloring by independent sets. In one communication
round, each vertex can check that the schedule is consistent by checking
that at each step: (i) its color differs from its neighbors’, and (ii) if its color
changes at some step i > 0 (i.e. ci−1 ̸= ci), then none of its neighbors have
their colors modified at that same step. The later condition ensures that
an independent set of vertices is recolored at each step, guaranteeing that
we have a parallel schedule if each vertex agrees with its neighbors.

When we handle r-locally unfrozen colorings in the distributed setting, a
vertex is given as input its distance to a closest unfrozen vertex in both the
initial and target colorings. The input validity can be checked in one round,
as each vertex just needs to check that (i) both colorings are locally proper
(around its vertex), and that (ii) it is unfrozen if the integer assigned to it
is 0, otherwise among all its neighbors, the minimum distance is one less
than its own distance.

3. Outline of the proofs

The proofs of both our Theorems 1.3 and 1.8 are in two steps. The first
step is slightly different, but the second step is the same for both results.

First step. The first step consists in reaching a coloring where the ver-
tices of a fixed set I are all unfrozen. For Theorem 1.3 (centralized recol-
oring), this step corresponds to the following proposition, where we start
from an unfrozen coloring.

Proposition 3.1. — Let G be a connected graph of maximum degree
∆ ⩾ 3. In this graph, let I be a maximal independent set at distance d ⩾ 15,
and σ be an unfrozen coloring. It is possible to transform σ into a coloring
µ where I is unfrozen, with O(n) single vertex recolorings.

For Theorem 1.8 (distributed recoloring), the first step corresponds to the
following proposition, where we start from an r-locally unfrozen coloring.

Proposition 3.2. — Let G be a connected graph of maximum degree
∆ ⩾ 3. In this graph, let I be a maximal independent set at distance
d ⩾ 15, and σ be an r-locally unfrozen coloring. It is possible to trans-
form σ into a coloring µ where I is unfrozen, with a parallel schedule of
length O((r + d)d∆6d+10). Moreover, this schedule can be computed in
O(d∆4d+10 + d log∗ n + r) rounds.
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Actually, the proofs of both Proposition 3.1 and 3.2 will use as an essen-
tial building block the following theorem, which is of independent interest.

Theorem 3.3. — For every r ⩾ 7, every graph G of maximum degree
∆ ⩾ 3, and every ∆ + 1-coloring of G, the following holds. For every
unfrozen vertex v, and every vertex w at distance r from v, there exists a
recoloring sequence, such that:

(1) At the end of the sequence, both v and w are unfrozen.
(2) All the other vertices that are recolored in the sequence are in the

interior of B(v, r).
Moreover, this recoloring sequence recolors each vertex at most twice, and
recolors at most 2r vertices in total.

Informally speaking, the result ensures that, in (∆+1)-colorings, we can
locally “duplicate” unfrozen vertices. This would not be possible without
the condition ∆ ⩾ 3, as illustrated by the following example. Consider a
path with the following coloring:

...1, 2, 3, 1, 2, 3, 1, 2, 3,2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, ...

The only unfrozen vertices are the bolded ones in the middle, with color 3
and 2. Now we can either turn 3 into 1, or 2 into 1. In both cases, we are
in a similar situation with a pair of unfrozen adjacent vertices. Therefore,
it is impossible to duplicate unfrozen vertices.

Second step. The second step, which is common to both theorems,
consists in reaching a fixed coloring γ, and it is achieved by the following
proposition.

Proposition 3.4. — Let G be a graph with ∆ ⩾ 3 and I be an inde-
pendent set at distance 28. Let k, k′ ∈ N such that k′ < k, k ⩾ ∆ + 1. Let
µ, γ be two colorings, using respectively at most k and k′ colors, that are
both unfrozen on I. There is a parallel schedule from µ to γ of length at
most (k′)O(∆). Moreover, such a recoloring schedule can be computed in
O(∆) rounds in the LOCAL model.

Note that even if k = ∆ + 1, a k′-coloring with k′ = ∆ exists, by Brook’s
theorem. Indeed, since we have an unfrozen coloring and ∆ ⩾ 3, G is neither
a clique nor an odd cycle.

We now have all the ingredients to establish our main results. Let us
restate and prove our two main theorems.

Theorem 3.5 (Restatement of Theorem 1.3). — Let G be a connected
graph with ∆ ⩾ 3 and σ, η be two unfrozen k-colorings of G with k ⩾ ∆+1.
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Then we can transform σ into η with a sequence of at most O(∆c∆n) single
vertex recolorings, where c is a constant.

Proof. — Let I be an maximal independent set at distance 28. By Propo-
sition 3.1, we can transform σ (resp. η) into a coloring µ (resp. µ′) which
is unfrozen on I by O(n) vertex recolorings.

Let γ be an arbitrary ∆-coloring of G (note that this coloring is unfrozen
on all the vertices, as we are allowed at least ∆+1 colors). In order to build
the recoloring sequence from µ to µ′, we will build one from µ to γ, and
one from γ to µ′. By Proposition 3.4, there is a recoloring schedule from µ

(resp. µ′) to γ recoloring at most ∆O(∆) independent sets. This sequence
recolors at most ∆O(∆) times each vertex, which completes the proof. □

The second theorem is about local reconfiguration, and we assume that
the colorings are r-locally unfrozen.

Theorem 3.6 (Restatement of Theorem 1.8). — Let k, ∆, r ∈ N such
that k > ∆ ⩾ 3. There exists three constants c, c′, c′′ such that, for any
graph G of bounded degree ∆, and σ, η two k-colorings of G which are
r-locally unfrozen(5) , we can transform σ into η with a parallel schedule of
length at most O(kc∆ + ∆c′

r). Moreover, this schedule can be computed
in:

• O(∆c′′ + log∗ n + r) rounds if k ⩾ ∆ + 2.
• O(∆c′′ + log2 n · log2 ∆ + r) rounds if k = ∆ + 1.

Proof. — We first compute an independent set at distance d = 28 in a
distributed manner in time O(∆28 + log∗ n) rounds in the LOCAL model
by [2]. Then by applying Proposition 3.2 with d = 28, we can transform
σ (resp. η) into a coloring µ (resp. µ′) such that all the vertices of I are
unfrozen with a recoloring schedule of length O(r∆178) in O(∆122+log∗ n+
r) rounds.

Assume first that k ⩾ ∆ + 2. It is easy to transform µ into a coloring
γ with k − 1 colors in one round: for every vertex that has color ∆ +
2, recolor it with a color of smaller index. Such a color must exist, and
the transformation takes only one round. Now by Proposition 3.4, we can
transform µ′ into γ efficiently, and finish this proof.

Now, if k = ∆ + 1, we first compute an arbitrary ∆-coloring, in time
O(log2 n log2 ∆), using the algorithm of [25], and then use Proposition 3.4
twice (between µ and γ, and between µ′ and γ). □

(5) For a formal definition of LOCAL model and of r-locally unfrozen colorings, the
reader is referred to Definition 2.1.
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4. Local warming and consequences

4.1. Maximum degree at least 3 ensures local warming

The goal of this section is to prove the following theorem, that ensures
that, in any large enough ball centered at an unfrozen vertex, we can un-
freeze at a vertex on the border while keeping its center unfrozen.

Theorem 4.1 (Restatement of Theorem 3.3). — For every r ⩾ 7, every
graph G of maximum degree ∆ ⩾ 3, and every ∆ + 1-coloring of G, the
following holds. For every unfrozen vertex v, and every vertex w at distance
r from v, there exists a recoloring sequence, such that:

(1) At the end of the sequence, both v and w are unfrozen.
(2) All the other vertices that are recolored in the sequence are in the

interior of B(v, r).
Moreover, this recoloring sequence recolors each vertex at most twice, and
recolors at most 2r vertices in total.

Consider a graph G of maximum degree ∆ ⩾ 3. In this section, we
consider σ to be an unfrozen (∆ + 1)-coloring of G and v to be an unfrozen
vertex of σ. Let B = B(v, r). Note that if the boundary of B is empty (that
is, the whole graph is contained in B(v, r −1)) then the theorem holds. For
the rest of the section, we will assume that this is not the case.

Let w be a vertex of the boundary of B. Our goal is to prove that there
exists a recoloring sequence of the vertices of the interior of B plus w, which
recolors w, and such that at the end of the sequence, v is still unfrozen.
In the following, such a recoloring sequence will be called a nice sequence.
The existence of a nice recoloring sequence implies Theorem 3.3. Let us
first give some conditions which ensure the existence of a nice recoloring
sequence.

Lemma 4.2. — Let P be a shortest path from v to w. Assume that P

contains an unfrozen vertex not in N [v]. Then there is a nice recoloring
sequence.

Proof. — Let z be the unfrozen vertex of P closest to w. By assumption,
we know that z is not adjacent to v. Let P ′ be the subpath from z to w.
We can recolor w by recoloring a ladder along this path P ′. Let us check
that this is a nice recoloring sequence. All the vertices of P ′, except w, are
in the interior of B, because P is a shortest path from the center of the ball
B to w. Moreover, after this transformation v is still unfrozen since none
of its neighbors were recolored. Finally, every vertex is recolored at most
once. See Figure 4.1 for an illustration. □
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v v1 vi = z vr−1 w

Figure 4.1. Illustration of Lemma 4.2. Blue vertices are frozen, red
vertices are unfrozen. The → arrow means that we perform a ladder
from z to w.

v v1 vi

z

vr−1 w

Figure 4.2. Illustration of Lemma 4.3. We perform a ladder from z to w.

We can extend this property to the vertices at distance 1 from the path
P .

Lemma 4.3. — Let P be a shortest path from v to w. Assume that there
is an unfrozen vertex z adjacent to P , such that 3 ⩽ d(v, z) ⩽ r − 1. Then
there is a nice recoloring sequence.

Proof. — The argument is similar to the one of Lemma 4.2. Let z be a
vertex satisfying the conditions of the lemma, that is the closest to w. Note
that z is in the interior of B, since d(v, z) ⩽ r − 1. Let z′ be the neighbor
of z in P which is the closest to w, then z′ is at distance at least 2 from v,
in particular, it is not a neighbor of v. Then, we can again recolor along a
ladder that starts with z, z′, and then continues along P towards w. This
allows us to recolor w while leaving the neighbors of v and the boundary
of B untouched. Each vertex is recolored at most once, which implies that
this is a nice recoloring sequence. See Figure 4.2 for an illustration. □

Lemma 4.4. — Let P = v0, . . . , vr be a shortest path from v = v0 to
w = vr. If there is an index 2 ⩽ i ⩽ r − 3 , such that σ(vi) ̸= σ(vi+3), then
there is a nice recoloring sequence.

Proof. — By Lemma 4.2, we can assume that all the vertices of P , except
for v = v0 and its neighbor v1, are frozen. Let us denote by η the coloring
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obtained by recoloring the ladder along P , starting either from v, if v1 is
frozen, or v1, if it is unfrozen, and ending in w. In η, we have recolored w,
but now v might be frozen. If v is unfrozen, we are done. If v1 is unfrozen,
then again we are done, since we can make a ladder with just v1 and v.
Thus, let us assume that both v1 and v are frozen in η.

Amongst the indices 2 ⩽ i ⩽ r − 3 such that σ(vi) ̸= σ(vi+3), let i be
the minimum one. We have the following claim:

Claim 4.5. — The vertex vi+2 is unfrozen in the coloring η.

Proof. — Let c = σ(vi+3). Let us make a few remarks:
(1) σ(vi+2) ̸= c, because σ is a proper coloring,
(2) σ(vi+1) ̸= c, because vi+2 is frozen in σ. More generally, none of

the neighbors of vi+2 except vi+3 has color c.
(3) σ(vi) ̸= c, because σ(vi) ̸= σ(vi+3) by assumption.

Now, by construction and by the properties of ladders, we have η(vj+1) =
σ(vj), for every vertex vj of the ladder, except vr = w. Transposing the
remarks above about σ to η we get that:

(1) η(vi+3) ̸= c,
(2) η(vi+2) ̸= c, and more generally, no neighbor of vi+2 has color c.
(3) η(vi+1) ̸= c.

Consequently, c does not appear in the closed neighborhood of vi+2 in
η, which implies that vi+2 is unfrozen in η, as claimed. □

By Claim 4.5, vi+2 is unfrozen in η. We can make a new ladder in η along
the path P from vi+2 to v. The vertex w is not recolored by this ladder,
and at the end v is unfrozen. Since every vertex is recolored at most twice,
we get a nice recoloring sequence. □

We now have all the tools to prove that a nice recoloring sequence al-
ways exists. Let us assume that we do not fall into one of the previous
cases. Let P = v0, . . . , vr be a shortest path from v to w. By Lemma 4.2,
all the vertices in P but the first two are frozen. By Lemma 4.3, all the
neighbors of P that are at distance at least three from v are frozen. Since
we are free to rename colors, Lemma 4.4 ensures that σ(vi) ∈ {0, 1, 2} and
σ(vi) = i mod 3 for every i ⩾ 2. We denote by η the coloring obtained by
recoloring the ladder along P starting either from v, if v1 is frozen, or from
v1 otherwise. As before, at that point we are done, unless both v and v1
are frozen in η. Note that, for i ⩾ 3, η(vi) = (i − 1) mod 3, because of the
color shift of the ladder.

Let us consider the vertex v5. It cannot have degree 2, because it is frozen
in σ, and no degree-2 vertex can be frozen in a ∆ + 1-coloring, with ∆ ⩾ 3.
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v v1 v5

z

vr−1 w

Step 2

Step 1

Figure 4.3. Illustration of Claim 4.6. We first perform a ladder from v

to w, then a ladder from z to v.

Hence, we can assume that v5 has a neighbor z outside P . And because
P is a shortest path, z is at distance at least 4 from v. Also note that,
since we assume that r ⩾ 7, d(v, z) ⩽ d(v, v5) + 1 ⩽ r − 1. Therefore, by
Lemma 4.3, z is frozen in σ. We will use the following claim:

Claim 4.6. — If z is unfrozen in η, then a nice recoloring exists.

Proof. — Indeed, from η, we can recolor along a ladder from z to v. After
this operation, no other vertex of the boundary is recolored, v is unfrozen,
and each vertex has been recolored at most twice. Hence, this defines a nice
recoloring sequence. See Figure 4.3 for an illustration. □

We make a case analysis depending on the number of neighbors of z in P .
Since P is a shortest path, z has at most three neighbors in P .
Case 1: z has exactly one neighbor in P . Since z is frozen in σ, v5 is its
only neighbor colored with σ(v5). In η, v5 is recolored with a different color,
which implies that z is no longer frozen in η. By Claim 4.6, the conclusion
follows.
Case 2: z has exactly two neighbors in P . Let c1 and c2 be the colors
of these two neighbors in σ. Since z is frozen in σ, it does not have two
neighbors colored with the same color. Moreover, in η, the two neighbors of
z in P have color c′

1 = c1 −1 mod 3 and c′
2 = c2 −1 mod 3 by Lemma 4.4

(since z is incident to v5, the other neighbor is at least v3). Then we have
{c1, c2} ≠ {c′

1, c′
2}. It follows that z is unfrozen in η, and the result follows

from Claim 4.6.
Case 3: z has exactly three neighbors in P . Since P is a shortest path,
these neighbors are consecutive in P . Let 3 ⩽ i ⩽ 5 such that vi, vi+1, vi+2
are the neighbors of z in P . Since z is adjacent to vi+1, we have σ(z) ̸=
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σ(vi+1) = (i + 1) mod 3. Let P ′ be the path obtained from P by replacing
vi+1 by z. (Note that z is not in the boundary of B, and then z ̸= w.)
Then P ′ is a shortest path from v to w, and since σ(z) ̸= (i + 1) mod 3,
we can apply Lemma 4.4 on P ′ to conclude. More precisely, if i = 3, then
(i + 1) + 3 ⩽ r because r ⩾ 7, and if i = 4, 5, then (i + 1) − 3 ⩾ 2, thus in
both cases Lemma 4.4 applies.

To sum up, the only remaining case was the one where none of the
previous lemmas apply, in which case we have just proved that considering
v5 and its neighbor z, we can find a nice recoloring. Hence, we can always
find a nice recoloring, which implies Theorem 3.3.

4.2. Using local warming to unfreeze an independent set

The next lemma ensures that, in the centralized setting, we can obtain
a 28-locally unfrozen coloring.

Proposition 4.7 (Restatement of Proposition 3.1). — Let G be a con-
nected graph of maximum degree ∆ ⩾ 3. In this graph, let I be a maximal
independent set at distance d ⩾ 15, and σ be an unfrozen coloring. It is
possible to transform σ into a coloring µ where I is unfrozen, with O(n)
single vertex recolorings.

We note that in the proposition above the O() notation does not have a
dependency in ∆.

Proof. — See Figure 4.4 for an illustration of the proof. We start by
unfreezing a vertex of I. Consider a vertex v in I that minimizes its distance
to an unfrozen vertex. If v is unfrozen, we are done. Otherwise, we take
a shortest path from v to the closest unfrozen vertex, and build a ladder
along this path to unfreeze v.

We construct an auxiliary graph H, where V (H) = I, and we put an
edge (u, u′) in H if there exists a path of length at most 2d from a vertex of
B(u, 7) to a vertex of B(u′, 7) in G, which does not contain any vertex in
B(u′′, 7) for any u′′ ∈ I, u′′ ̸= u, u′. Note that for any pair a, b ∈ I, B(a, 7)
and B(b, 7) are disjoint, since d ⩾ 15.

Claim 4.8. — The graph H is connected.

Proof. — Suppose the claim does not hold. Let A be a (connected) com-
ponent of H. Let u ∈ A and w ∈ I \ A, such that dG(u, w) is minimum
among the such pairs. If d(u, w) ⩾ 2d + 2, then the vertex in the middle
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of a shortest path between u and w is at distance at least d + 1 from any
vertex in I which contradicts the assumption that I is a maximal indepen-
dent set at distance d. Therefore, there exists u ∈ A and w ∈ I \ A such
that dG(u, w) ⩽ 2d + 1. Let us choose again those vertices to minimize
dG(u, w) and let P be a shortest path from u to w. Let x be the last ver-
tex of P in B(u, 7) and y the first vertex of P in B(w, 7). We necessarily
have d(x, y) ⩽ 2d. Since u and w are not connected in H, P must intersect
B(y, 7), for some vertex y ∈ I, y ̸= u, w (by definition of H). As y is either
in A or I \ A, this contradicts the choice of u and w that minimizes their
distance (in the first case, w and y was a better option, u and y was a
better option in the second case). □

u

v

Figure 4.4. Illustration for Section 4.2. Building the graph H over the
set of independent vertices I (vertices in blue). Vertex u is not frozen,
and its closest neighbor in I is v. If v is unfrozen, we perform a ladder
from u to v.

Now, let us denote by T a spanning tree of H rooted in v. Let τ be a
breadth first search (BFS) ordering of T . The index of a vertex of H is its
position of appearance in the BFS. Let u be the first vertex of τ that is
frozen. (If no such vertex exists, we are done.) Note that u cannot be the
root of the tree, since v is unfrozen.

Claim 4.9. — By recoloring a constant number of vertices, we can un-
freeze u, and this operation leaves the vertices of smaller index unfrozen.

Proof. — Let u′ be the parent of u in T . By definition, u′ is unfrozen.
Let P be a path from u to u′ in G corresponding to the edge (u, u′) in H.
By definition, P has length at most 2d and does not intersect B(u′′, 7) for
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v

1

4

6
32
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8
32

1 4

5

6

Figure 4.5. Illustration of Claim 4.9. We build a BFS tree from v. For
vertices visited by the BFS from first to last, if this vertex is frozen,
use its parent in the tree to unfreeze it (symbolized with the ↔ arrow).
The label on each arrow tells in which order (blue) frozen vertices get
unfrozen.

any u′′ ∈ I, u′′ ̸= u, u′. Also, we can assume that P is an induced path,
since otherwise we can take a path on a subset of vertices of P , satisfying
the same properties. If there is a vertex y in P \ B(u′, 7) that is unfrozen,
we simply recolor a ladder from y to u, to unfreeze u. Otherwise, let x be
the last vertex of P in B(u′, 7). By Theorem 3.3, by recoloring at most
14 vertices, we can unfreeze x, leave u unfrozen and while recoloring only
vertices in B(u′, 6) (and x). We can recolor a ladder from x to u to get
the conclusion. In both cases, the recoloring sequence has length at most
2d + 14, and the unfrozen vertices of I are kept unfrozen. □

We iterate this construction to get all of I unfrozen. See Figure 4.5 for an
illustration. This requires at most (2d+14)|I| ⩽ (2d+14)·n recoloring steps.
This proves Proposition 3.1. Note that since every vertex v has at most ∆2d

other vertices of I at distance at most 2d, and that only a constant number
of ladders for each such vertex can recolor v, every vertex is recolored at
most O(∆2d) times during the whole process. □

We now prove a local analogue of the previous proposition. Intuitively,
it says that if we have a well-spread set of unfrozen vertices, we can move
it to another well-spread set locally.

Proposition 4.10 (Restatement of Proposition 3.2 ). — Let G be a
connected graph of maximum degree ∆ ⩾ 3. In this graph, let I be a
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maximal independent set at distance d ⩾ 15, and σ be an r-locally un-
frozen coloring. It is possible to transform σ into a coloring µ where I is
unfrozen, with a parallel schedule of length O((r + d)d∆6d+10). Moreover,
this schedule can be computed in O(d∆4d+10 + d log∗ n + r) rounds.

Note that r could be large and depend on n, in which case Proposition 3.2
not only moves the set of well-spread unfrozen vertices around, but also
makes it denser.

Proof. — Let σ be an r-locally unfrozen coloring. We proceed in two
steps: first, we show that we can somehow replace the set of unfrozen ver-
tices with a subset of I, and then we show how to unfreeze all the vertices
of I. For both steps, we will use an auxiliary coloring of the vertices of
I. Note that this auxiliary coloring is just a tool, and is independent of
the coloring we are modifying. Let p be an integer. Consider a graph H,
whose vertex set is I and whose edges are the pairs (a, b) ∈ I2, such that
dG(a, b) ⩽ p. The graph H has maximum degree ∆H = O(∆p), thus we
can compute a (∆H + 1)-coloring α of H in O(∆H + log∗(|H|)) rounds in
H [2]. Since any computation round in H can be simulated in p rounds
in G (since each edge in H is a path of length at most p in G), we can
compute the auxiliary coloring α of I in G in O(p∆p + p log∗ n) rounds (in
G).

Claim 4.11. — From σ, we can reach a coloring η in which any vertex
of I is at distance at most r+d from an unfrozen vertex of I, with a parallel
schedule of length O(d∆2d+4) computed in O(d∆2d+2 + d log∗ n) rounds.

Proof. — Let N be the set of unfrozen vertices at the beginning of the
algorithm. Consider an auxiliary (∆H +1)-coloring α of H, with p = 2d+2.
Let Mi be the set of vertices of I that have color i in α. We will go through
the sets Mi, in successive phases. At phase i, for every u ∈ Mi that is
frozen, if B(u, d) contains a vertex v of N that is still unfrozen, we recolor
a ladder from v to u (where we take v to be the closest unfrozen vertex).
Since, p = 2d + 2, the balls B(u, d + 1) with u ∈ Mi are all disjoint by
construction of the Mi. Therefore, we can perform these transformations
for each vertex of Mi with a unfrozen node at distance at most d in parallel
without coordination. Now, we want the additional property that a vertex
u of I that has been unfrozen cannot be refrozen. This could happen if
there is an unfrozen vertex in the neighborhood of u that is the start of
a ladder (thus at distance exactly d from another vertex of I). We add a
twist to the algorithm: if this situation occurs, we do not build the ladder.
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To prove that the claim holds at the end of this process, consider a vertex
w of I. By assumption, at the beginning w was at distance at most r from
an unfrozen vertex x of N . Consider a vertex u of I in B(x, d) (such a
vertex exists by maximality). If this vertex u is unfrozen, then the claim
holds for w. If u is frozen, the only possibility is that we did not build a
ladder from x to u because of the twist in the algorithm. But in this case
there exists a vertex u′ ∈ I in the neighborhood of x which is necessarily
unfrozen (since there is no obstruction to building a ladder from x to u′).

The round complexity is dominated by the computation of the auxiliary
coloring, and the schedule length can be bounded by the maximum size of
a ladder inside a ball O(d), times the number of color classes O(∆2d+4).
See Figure 4.6 for an illustration. □

Figure 4.6. Illustration for Claim 4.11. The vertices represented as
red circles are unfrozen vertices (i.e. N). The other vertices are in I,
with the edges of H. The colors of the vertices of I correspond to
the auxiliary coloring. An edge from a vertex in N to a vertex v in I

corresponds to a ladder to unfreeze v. This algorithm ensures that for
all vertices in I there is an unfrozen vertex in I at distance at most
r + d in G.

We have ensured that, for each vertex in I, there is an unfrozen vertex
not too far. We will now show how to ensure that each vertex in I gets
unfrozen efficiently:

Claim 4.12. — Consider a coloring of G where some vertex in I is
frozen. We can reach a new coloring, where each frozen vertex in I has a
strictly smaller distance to an unfrozen vertex, with a parallel schedule of
length O(∆6d+14) in O(d∆4d+10 + d log∗ n) rounds.
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Proof. — Again, consider an auxiliary (∆H + 1)-coloring α of H, with
this parameter p = 4d + 10. We will consider the color classes Mi, one
after another. For every u ∈ Mi, let Xu be the ball B(u, 2d + 4) plus the
vertices of I at distance exactly 2d + 5 from u in G. Note that no vertex
of I in V \ Xu is adjacent to Xu. If u is unfrozen, then we can unfreeze
all the vertices of I ∩ Xu: since d ⩾ 15, we can proceed exactly like in the
proof of Proposition 3.1. Note that, similarly to the previous proof, because
of our definition of the sets Xu (for vertices u), these recolorings can be
performed in parallel, and no vertex of I that was unfrozen can be refrozen.
See Figure 4.7 for an illustration.

We claim that, at the end of this recoloring, the minimum distance from
any vertex u of I to the closest unfrozen vertex of I has decreased. Indeed,
let v be the closest unfrozen vertex of I from u at the beginning. If d(u, v) ⩽
2d+4, u is unfrozen at the end of the algorithm by construction. Otherwise,
let x be the (d+1)-th vertex of a shortest path from v to u. Note that x must
be at distance at most d from a vertex v′ of I. Thus v′ is in B(v, 2d + 1).
So v′ is unfrozen at the end of the algorithm. And since the distance from
u to v′ is strictly smaller than the one from u to v, we get the condition of
the claim. The computation of the schedule length and number of rounds
are similar to the ones of the previous claim, except the unfreezing of each
Xu ∩ I uses O(∆2d+4) recoloring steps. □

From the r-locally unfrozen coloring, by using the algorithm of
Claim 4.11, we ensure that vertices in I have unfrozen vertices at dis-
tance at most r + d. We then iterate the algorithm of Claim 4.12, to finally
unfreeze all of I. As each iteration decreases the maximal distance by 1,
after r + d iterations, we get that all vertices in I are unfrozen.

The number of iteration of Claim 4.12 is at most r + d by Claim 4.11,
thus the total schedule length is in O((r +d)d∆6d+10). The total number of
rounds is O(d∆4d+10 + d log∗ n + r) since we can reuse the same auxiliary
coloring for all the iterations.

□

5. Recoloring locally unfrozen colorings

The goal of this section is to prove Proposition 3.4, which roughly says
that we can perform an efficient distributed recoloring between two color-
ings that are unfrozen on the same independent set S. (The exact statement
will be reminded a bit later.) Figure 5.1 illustrates the general strategy.

Let us first prove a few lemmas.
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Figure 4.7. Illustration for Claim 4.12. For each color in α, if a vertex
has this color and is unfrozen, unfreeze vertices in I that are in its
distance-(2d+4) neighborhood, using the process from Claim 4.9. Here,
for color green, the left vertex that is unfrozen will unfreeze its frozen
neighbors. The other green vertex does nothing as it is frozen, however
it gets a closer unfrozen vertex in I after this step.

Figure 5.1. To compute the recoloring schedule, we first consider the
subgraph where, for each node x in I, we remove B(x, r) (the gray balls
in the figure). This holed graph has a specific structure, that allows
us to compute a recoloring schedule efficiently. Then we extend this
schedule to the full graph. Each time a vertex needs to take a color
that is blocked by a vertex from one of the balls B, we use Theorem 3.3
to unfreeze it, allowing it to free the color needed.
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5.1. Degeneracy ordering lemma

A graph G is d-degenerate if any subgraph of G admits a vertex of de-
gree at most d. In other words, there exists an ordering v1, . . . , vn of the
vertices such that for every i ⩽ n, the vertex vi has at most d neigh-
bors in vi+1, . . . , vn. In the following, we group vertices in independent sets
V1, . . . , Vq, such as all vertices in Vi have at most d neighbors in Vi+1∪. . .∪Vq

(note that vertices in Vi do not have neighbors in Vi, since the Vi’s are in-
dependent sets).

Lemma 5.1. — Let G be a connected r-locally unfrozen graph which is
k-colorable, and let S be a maximal independent set at distance at least
2r + 2. Let BS be the set of vertices at distance at most r from S, and
G′ = G \ BS .

Then there exists a (∆ − 1)-degeneracy ordering of G′, consisting of
O(r · k) independent sets. Moreover, if we are given a k-coloring c of G′,
such an ordering can be found in O(r) rounds in the LOCAL model.

Proof. — The graph G′ is (∆ − 1)-degenerate because we have removed
at least one vertex from a connected graph of maximum degree ∆. The
degeneracy ordering of G′ will be built by first splitting G′ into layers such
that each vertex v in layer i has at most ∆ − 1 neighbors in layers j ⩾ i.
Then we will split each layer into independent sets using the coloring c.

We define layer i, noted Li, of G′ as the set of vertices at distance exactly
i from BS . Since S is a maximal independent set at distance 2r + 2, all
the vertices of G′ belong to a layer i with i ⩽ r + 2. All the vertices in
layer 1 have a neighbor in BS and, for every i ⩾ 2, all the vertices in layer
i have at least one neighbor in layer (i − 1). So the graph induced by the
layers ∪j⩾iLj is (∆ − 1)-degenerate (and all the vertices of Li have degree
at most ∆ − 1 in ∪j⩾iLj). We now split each layer into k independent sets
using the color classes of a k-coloring c. We can order the vertices in the
layers by color, and get a (∆ − 1)-degeneracy ordering of G′ composed of
O(r · k) consecutive independent sets.

Note that in the LOCAL model, if S is given, computing this partition
can be done in O(r) rounds. Indeed, after computing its distance to S, each
vertex knows if it is in BS or in which layer it is. As their color in c is given
as input, they do not need more information. □
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5.2. List-coloring lemma

The following lemma is a list-coloring adaptation of a proof of Dyer,
Flaxman, Frieze, and Vigoda [21], that ensures that one can transform any
(d + 2)-coloring of a d-degenerate graph into any other. Let G be a graph
in which, for every vertex u, we are given a list Lu of colors. A coloring c

of G is compatible with the lists Lu, if the coloring is proper and for every
vertex u, c(u) ∈ Lu. Let τ be an ordering of V (G). We denote by d+

τ (u)
(or d+(u), when τ is clear from context) the number of neighbors of u that
appear after u in τ . We say that a set of lists is safe for τ if, for every
vertex u, |Lu| ⩾ d+

u + 2.
We will consider particular schedules in the LOCAL model such that, at

each step, all the recolored vertices are recolored from the same color a to
the same a color b (in particular, the recolored vertices form an indepen-
dent set). We call such a reconfiguration step an a → b step. A recoloring
schedule where all the steps are a → b steps is called a restricted sched-
ule. Note that any schedule can be transformed into a restricted schedule
by multiplying the length of the schedule by O(k2) (where k is the total
number of colors). Indeed, we simply have to split each step s of the initial
schedule into k(k − 1) different a → b steps sa,b for every pair of colors
a, b. At step sa,b, we recolor from a to b all the vertices recolored from a

to b at step s. Note that since at step s, the set of recolored vertices is
an independent set, all the intermediate colorings obtained after sa,b are
proper.

Lemma 5.2. — Let G be a graph, τ be an ordering of G composed of
t consecutive independent sets, and d = maxv∈V d+

τ (v). Consider a set of
lists (Lv)v∈V that are safe for τ . Let σ, η be two k-colorings of G compatible
with (Lv)v∈V .

There exists a parallel schedule from σ to η with a restricted schedule of
length at most kt+1 where k = | ∪v∈V Lv|. Moreover, this schedule can be
found in O(t) rounds, if τ is given.

Proof. — Let I1, . . . , It be the independent sets of the ordering τ . For
every i ⩽ t, we denote by Gi the graph G[∪j⩽iIj ].

Let us prove by induction on i that we can recolor Gi from σGi to ηGi

with a restricted parallel schedule of length at most ki+1. Since G1 induces
an independent set, a restricted schedule of length k · (k − 1) ⩽ k2 exists:
for every pair a ̸= b, we create an a → b step where we recolor the vertices
of I1 colored a in σ and b in η, from color a to color b. After all these steps,
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the coloring is ηG1 . Since I1 is an independent set, we indeed recolor an
independent set at any step.

In order to extend the transformation of Gi−1 into a transformation of
Gi (with i ⩾ 2) we perform as follows. For each step s of the transformation
of Gi−1, we will add (k − 2) new steps before s. Since the transformation
is a restricted schedule, there exists a, b such that s is an a → b step. For
every c ̸= a, b, we add a b → c step, denoted sb,c, between s and the step
before in the transformation of Gi−1. Let I be the set of vertices recolored
at step s, and NI be the set of vertices at distance exactly 1 from a vertex
of I. In sb,c, we recolor all the vertices of Gi ∩NI colored b with the color c,
if it is possible (i.e. if c is in their lists, and they do not have any neighbor
already colored c) . Note that every vertex v of I colored b can indeed be
recolored with some color c, distinct from a, since the size of the list of v

is at least the degree of v plus two in Gi. So after these new steps, we can
safely apply the a → b step without creating monochromatic edges in Gi.

Finally, at the end of the reconfiguration sequence of Gi−1, we add k ·
(k − 1) steps in order to recolor the vertices of Ii with their target colors
(after Gi−1 has reached its target coloring) as we did for I1. This provides
a restricted schedule of length (k − 2) · ki + k · (k − 1) ⩽ ki+1 from σGi to
ηGi

. This proves the induction.
In order for a vertex to compute its own schedule, it simulates the in-

duction above. For a given node, changing its own color implies the change
of colors of some neighbors of smaller level. Hence, in the LOCAL model,
it suffices to know the neighborhood at distance t. □

As an immediate corollary, we obtain the following, where the lists are
just the same k colors for every vertex:

Lemma 5.3. — Let G be a d-degenerate graph and σ, η be two k-
colorings of G with k ⩾ d + 2. Assume that G has a degeneracy ordering
composed of t consecutive independent sets. Then there exists a parallel
schedule from σ to η with a restricted schedule of size at most kt+1, that
can be computed n O(t) rounds in the LOCAL model.

5.3. Recoloring outside the balls

Let us now prove that we can obtain coloring, where the target colors
have been reached, for the vertices of V \ BS . Then we will explain how
we can transform such a coloring into the target coloring by recoloring
(almost) only vertices of BS .
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Lemma 5.4. — Let k ⩾ ∆+1 and r ⩾ 7. Let G be a graph of maximum
degree ∆ ⩾ 3, and let σ, η be two r-locally unfrozen k-colorings of G. Let S

be a maximal independent set at distance r′ ⩾ 2r + 2. Let G′ = G[V \ BS ]
where BS = ∪x∈SB(x, r).

Then, there exists a coloring η′ such that η′
G′ = ηG′ and a parallel sched-

ule of length kO(r′k) from σ to η′.

Proof. — The first part of the recoloring sequence is a pre-processing step
to ensure that every vertex v ∈ S is unfrozen. Since σ is r-locally unfrozen,
for every v in S, there is a vertex u in B(v, r) such that u is unfrozen. By
recoloring a ladder along a shortest path from u to v, v is unfrozen. Since
B(v, r) does not share an edge with B(v′, r) for any v, v′ ∈ S, we can repeat
this argument for every v ∈ S and then assume that S is unfrozen. In the
LOCAL model, all these recolorings pre-processing steps can be performed
in parallel. So, from now on, we can assume that, in σ, every vertex of S

is unfrozen (and we will keep this property all along the schedule).
By Lemma 5.1, we have a degeneracy order, and Lemma 5.3 uses it to

provide a restricted recoloring schedule R in G′ from σG′ to ηG′ in at most
kO(r′k) steps.

Let us now explain how we can extend the restricted schedule R of G′ to
G, that is, avoid the conflicts between vertices in G′ and their neighbors in
G that are in BS . Let X be the set of vertices which are recolored during
an a → b step of R. Denote by Y the set of vertices of BS such that Y is
adjacent to a vertex of X. We will recolor these vertices, before they create
any conflict.

For each ball of radius r centered in u ∈ S, we first identify the vertices
of Yu = Y ∩ B(u, r) that are colored b. Note that Yu is an independent
set. By Theorem 3.3, we can recolor each vertex of Yu in at most 2r steps
with a different color, leaving u unfrozen, and without modifying the color
of any other vertex in Yu. Since Yu contains at most ∆r vertices, we can
change the color of all the vertices of Yu with a schedule of length at most
2r · ∆r ⩽ 2r′kr′ . Since all the balls of radius r centered in S are disjoint
and do not share an edge, we can perform these schedules in parallel for
each ball of radius r centered in S.

Since the restricted schedule R has length at most kO(r′k), the new
schedule has length at most kO(r′k) · 2r′kr′ = kO(r′k), which completes
the proof. □

The previous lemma ensures that, from any locally unfrozen coloring, we
can obtain a locally unfrozen coloring where all the vertices but the vertices
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of BS are colored with the target coloring. Before completing the proof of
Proposition 3.4, we need one more lemma.

5.4. Recoloring inside the balls (easy case)

Lemma 5.5. — Let k ⩾ ∆+1. Let σ and η be two k-colorings of a graph
G which only differ on X ⊆ V . Assume that, in each connected component
C of G[X], there exists a vertex that has degree at most k − 2 or has two
neighbors in V \X colored the same. Then there is a parallel schedule from
σ to η of length at most kO(diam(X)k).

Proof. — Let C be a component of X. For every vertex v of G[C], let
Zv be the set of colors in σ that appear on neighbors outside X, that is
on N(v) ∩ (V \ X). We assign to every vertex v of G[C] the list of colors
[k]\Zv. Note that since the total number of colors is k ⩾ ∆+1, every vertex
x ∈ C has a list of size at least degG[X](x) + 1. Moreover, if a vertex x has
degree at most k − 2 in G, or two neighbors of x are colored the same in
V \X, its list has size at least degG[X](x)+2. We claim that we can build a
degeneracy ordering of C for which the lists of C are safe, and that consists
of diam(C)k consecutive independent sets. Indeed, similarly to earlier in
the paper, we can take the vertices of C by layers, corresponding to the
distance from V \X, and then split these layers into independent sets using
the colors of σ.

Finally, by Lemma 5.3, there exists a recoloring sequence of G[C] from
σ to η which recolors each vertex at most kO(diam(C)k) times. Since we can
treat each component of X simultaneously (there is no edge between them),
the conclusion follows. □

5.5. Finishing the proof of Proposition 3.4

All the previous lemmas can be combined in order to prove Proposi-
tion 3.4, that we restate here. Note that since recoloring with 2∆+2 colors
is trivial, we implicitly consider that k, k′ are below this value.

Proposition 5.6 (Restatement of Proposition 3.4). — Let G be a
graph with ∆ ⩾ 3 and I be an independent set at distance 28. Let k, k′ ∈ N
such that k′ < k, k ⩾ ∆ + 1. Let µ, γ be two colorings, using respectively
at most k and k′ colors, that are both unfrozen on I. There is a parallel
schedule from µ to γ of length at most (k′)O(∆). Moreover, such a recoloring
schedule can be computed in O(∆) rounds in the LOCAL model.
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Proof of Proposition 3.4. — Let r = 7. Let I be a maximal independent
set at distance r′ = 2r + 14. Let G′ = G \ BI where BI = ∪x∈IB(x, r).
By Lemma 5.4, there is a coloring η′ which agrees with µ on G \ BI and a
recoloring schedule from γ to η′ of length at most kO(rk). To conclude, we
only need to find a recoloring sequence from η′ to µ, that is to prove that
we can recolor all the balls of BI with their target coloring µ.

For every ball Bv of radius r centered in v ∈ I, we will define a set B′
v

which is an extension of Bv. We might include some vertices at distance at
most r + 5 from v in order to satisfy the conditions of Lemma 5.5. Since
I is an independent set at distance 2r + 14, for every v, w ∈ I, the sets
B′

v and B′
w will be at distance at least 4. Let B′

I = ∪v∈IB′
v. Since the

diameter of each ball B′
v for v ∈ S is O(r) and all the balls of B′

I are
disjoint, we will conclude the proof of the proposition using Lemma 5.5.
The schedule length k′O(∆) follows from the bounds in the lemma, as well
as diam(X) ⩽ r + 5 = 12, in the notations of Lemma 5.5.

In the rest of the proof, we restrict to a single ball Bv for v ∈ I denoted
by B for simplicity.

If a vertex of B has two neighbors in V \ B colored the same or has
degree less than k − 2, we set B′ = B. Otherwise, let us prove that by
adding a few vertices to B and doing a few recoloring steps, we can apply
the Lemma 5.5. Note that no vertex of V \ B is colored with k in η′, since
it agrees with µ, which is a k′-coloring with k′ < k by assumption.

Let us consider a path v1, v2, . . . , v6 of vertices such that vi is at distance
i from B. For every i ∈ {3, 4, 5}, we can obtain a desired set B′ if one of
the following holds:

• If deg(vi) < ∆, then we simply take B′ = B ∪ {vj : j ⩽ i} which
contains a vertex of degree less than ∆.

• If N(vi) \ vi−1 is not a clique, then let a, b be two neighbors of vi

that are non-adjacent. Then, since d(a, B) and d(b, B) are at least
two, we can recolor a and b with k in η′ (the coloring is proper
since color k was not used in µ by assumption). Now, in this new
coloring, B′ = B ∪ {vj : j ⩽ i} satisfies the condition. (We will
recolor a and b to the right color at the very end of the algorithm.)

Let us now prove that one of the conditions above must hold. Assume,
for the sake of contradiction, that for every 3 ⩽ i ⩽ 5, N(vi) \ vi−1 is a
clique and that all the vi’s have degree at least ∆.

Let z be a vertex of N(v3) distinct from v2 and v4 (which exists since
∆ ⩾ 3). The vertex z is at distance at most 4 from B. Moreover, v4z is an
edge (otherwise N(v3) \ v2 is not a clique). Since N(v4) \ v3 is a clique, zv5
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must also be an edge. But then N(v5) \ v4 cannot be a clique: that would
mean that z and v6 are adjacent, and then v6 would be at distance 5 from
B, which is a contradiction.

Now, by Lemma 5.5, we can recolor all the vertices of B′ with the target
coloring µ in such a way that every vertex of B′ is recolored at most ∆O(∆r)

times (since the diameter of B′ is at most the diameter of B plus 5). We
then finally recolor, if needed, the two vertices recolored k in the second
item of the construction of B′ with their real target color in µ.

Since all the balls B′ are disjoint and do not share an edge, we can apply
these steps in parallel. Moreover, since they are at distance at least 4, the
fact that we recolor a vertex at distance 5 from B can also be done in
parallel. This completes the proof of Proposition 3.4. □
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