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THE COMPLEXITY OF RECOGNIZING
GEOMETRIC HYPERGRAPHS
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Abstract. — As set systems, hypergraphs are omnipresent and have various
representations ranging from Euler and Venn diagrams to contact representations.
In a geometric representation of a hypergraph H = (V, E), each vertex v ∈ V is
associated with a point pv ∈ Rd and each hyperedge e ∈ E is associated with a
connected set se ⊂ Rd such that {pv | v ∈ V } ∩ se = {pv | v ∈ e} for all e ∈ E.
We say that a given hypergraph H is representable by some (infinite) family F
of sets in Rd, if there exist P ⊂ Rd and S ⊆ F such that (P, S) is a geometric
representation of H. For a family F , we define Recognition(F) as the problem to
determine if a given hypergraph is representable by F . It is known that the Recog-
nition problem is ∃R-hard for halfspaces in Rd. We study the families of translates
and homothets of balls and ellipsoids in Rd, as well as of other convex sets, and
show that their Recognition problems are also ∃R-complete. In particular, for a
bi-curved, computable set C, the recognition problem of the family of translates
(or homothets) of C is ∃R-complete if it is T-difference-separable (H-difference-
separable). We show that for bounded sets in the plane, convexity is equivalent
to T-difference-separability and H-difference-separability ; in higher dimensions,
convexity is necessary but not sufficient. Our results imply that these recognition
problems are equivalent to deciding whether a multivariate system of polynomial
equations with integer coefficients has a real solution.

1. Introduction

As set systems, hypergraphs appear naturally in various contexts, such
as databases, clustering, and machine learning. They are also known as
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range spaces (in computational geometry) or voting games (in social choice
theory). A hypergraph can be represented in numerous ways, e.g., by a
bipartite incidence graph, a simplicial representation (if the set system is
closed under taking subsets), Euler or Venn diagrams. Similar as in classic
graph drawing, one can represent vertices by points and hyperedges by
connected sets in Rd such that each set contains exactly the points of a
hyperedge. For the purposes of legibility, uniformity, or also for aesthetic
reasons, it is desirable that these sets satisfy additional properties, e.g.,
being convex or having similar appearance such as being homothetic copies
or even translates of each other.

For an introductory example, suppose we are organizing a conference and
have a list of accepted talks. Clearly, each participant wants to quickly iden-
tify talks of their specific interest. In order to create a good
overview, we seek a way to nicely visualize this data. To this end, we label
each talk by several keywords, e.g., hypergraphs, complexity theory,
planar graphs, beyond planarity, straight-line drawing, crossing
numbers, etc. Then, we create a representation, where each keyword is rep-
resented by a unit disk (or another nice geometric object of our choice) con-
taining exactly the points that represent the talks that have this keyword.
For an example of such a representation see Figure 1.1. In other words, we
are interested in a geometric representation of the hypergraph where the
vertex set is given by the talks and keywords define the hyperedges.
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Figure 1.1. A geometric representation with unit disks of the hy-
pergraph H = (V, E) with V = [8] and E = {{1, 2, 3}, {3, 4, 5, 6},
{5, 6, 7}, {6, 7, 8}}.

In this work, we investigate the complexity of deciding whether a given
hypergraph has such a geometric representation. We start with a formal
definition.
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The Problem. In a geometric representation of a hypergraph H =
(V, E), each vertex v ∈ V is associated with a point pv ∈ Rd and each
hyperedge e ∈ E is associated with a connected set se ⊂ Rd such that
se ∩ {pv | v ∈ V } = {pv | v ∈ e} for all e ∈ E. We say that a given
hypergraph H is representable by some (possibly infinite) family F of sets
in Rd, if there exist a point set P ⊂ Rd and S ⊆ F such that (P, S) is a
geometric representation of H. For a family F of geometric objects in Rd,
we define Recognition(F) as the problem to determine whether a given
hypergraph is representable by F . Next, we give some definitions describing
the geometric families studied in this work.

Bi-curved, Difference-separable, and Computable Sets. We study
sets that are bi-curved, difference-separable and computable. While the
first two properties are needed for ∃R-hardness, the last one guarantees
∃R-membership.

Let C ⊂ Rd be a set. We call C computable if for any point p ∈ Rd we
can decide in polynomial time on a real RAM whether p is contained in C.

We say that C is bi-curved if there exists a unit vector v ∈ Rd and a
neighborhood N of v, such that for every unit vector v′ ∈ N there exists
a unique pair of tangent hyperplanes on C with normal vector v′ with
the following two properties: (i) C lies between the hyperplanes and (ii)
each of these hyperplanes intersects the boundary of C in a single point.
We furthermore require that the contact points change continuously when
changing v′ ∈ N . Note that a bi-curved set is necessarily bounded. As an
example, each strictly convex bounded set in any dimension is bi-curved;
for such a set, any unit vector v fulfills the conditions. As illustrated by
Figure 1.2a, being strictly convex is not necessary for a set to be bi-curved.

(a) This burger-like set
is bi-curved as shown
by the two tangent
hyperplanes.

(b) A hyperplane separat-
ing the symmetric differ-
ence of two translates of
the burger-like set.

(c) Two cubes in R3

whose symmetric dif-
ference cannot be sep-
arated by a plane.

Figure 1.2. Illustration for the notions bi-curved and difference-sepa-
rable.
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We call a family F of sets difference-separable if for any two members
C1, C2 of F , there exists a hyperplane which strictly separates C1 \C2 from
C2 \ C1. We call a set C ⊂ Rd T-difference-separable if the family of all
translates of C in Rd is difference-separable. As we prove in Lemma 6.1,
any bounded T-difference-separable set is necessarily convex. Consequently,
bi-curved and T-difference-separable sets are always convex. Reversely, any
bounded convex set in R2 is T-difference-separable, see Figure 1.2b for an
example. Thus, for bounded sets in R2, convexity and T-difference-sepa-
rability are equivalent. However, in higher dimensions this is not the case:
There exists a convex set in Rd such that the family of its translates is
not difference-separable, e.g., consider the two cubes in R3 in Figure 1.2c.
Besides families of translates, we are interested in families of homothets and
call a set C H-difference-separable if the family of homothets of C is differ-
ence-separable. Interestingly, any convex set in R2 and every ellipsoid is also
H-difference-separable; for proofs of these facts we refer to to Lemmata 6.3
and 6.4. In conclusion, the bi-curved and H-difference-separable families
include all strictly convex sets in R2 and families of balls and ellipsoids are
H-difference-separable in all dimensions. We are not aware of other natural
geometric families with those two properties in all dimensions. Note that
balls and ellipsoids are naturally computable.

We are now ready to state our results.

1.1. Results

We study the recognition problem of geometric hypergraphs. We first
consider the maybe simplest type of geometric hypergraphs, namely those
that stem from halfspaces. It is known due to Tanenbaum, Goodrich,
and Scheinerman [64] that the Recognition problem for geometric hy-
pergraphs of halfspaces is NP-hard, but their proof actually implies ∃R-
hardness as well. We present a slightly different proof of this fact due to
two reasons. Firstly, their proof lacks details about extensions to higher
dimensions. Secondly, it is a good stepping stone towards Theorem 1.3.

Theorem 1.1 (Tanenbaum, Goodrich, Scheinerman [64]). — For ev-
ery d ⩾ 2, Recognition(F) is ∃R-complete for the family F of halfspaces
in Rd.

We note that for d = 1, the recognition problem for halfspaces can be
solved in polynomial time, because it is easy to decide whether two hyper-
edges are represented by halfspaces that are unbounded into the same or
different directions.
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Next we consider families of objects that are translates or homothets of
a given object. For d = 1, the considered Recognition problems can be
solved in polynomial time as the problems are very close to recognizing
unit interval graphs and interval graphs, respectively.

Lemma 1.2. — Let C ⊆ R be a convex set, and let TC be the family
of all translates of C and HC be the family of all homothets of C. Then
Recognition(TC) and Recognition(HC) are polynomial time solvable.

For d ⩾ 2, we show ∃R-completeness.

Theorem 1.3. — theorem For d ⩾ 2, let C ⊆ Rd be a bi-curved, T-
difference-separable (thus convex) and computable set, and let TC be the
family of all translates of C. Then Recognition(TC) is ∃R-complete.

With similar techniques, we determine the recognition complexity for
families of homothetic objects.

Theorem 1.4. — For d ⩾ 2, let C ⊆ Rd be a bi-curved, H-difference-
separable (thus convex) and computable set, and let HC be the family of
all homothets of C. Then Recognition(HC) is ∃R-complete.

Together with our insights on T-difference-separable sets, namely Lem-
mata 6.3 and 6.4, Theorems 1.3 and 1.4 yield the following result.

Corollary 1.5. — When C is a bounded strictly convex set in R2, a
bi-curved convex set in R2, or an ellipsoid in Rd, d ⩾ 2, then the decision
problems Recognition(TC) and Recognition(HC) are ∃R-hard.

It is natural to wonder which sets are T-difference-separable and H-dif-
ference-separable. In the plane, we obtain the following simple characteri-
zation.

Theorem 1.6. — The following statements are equivalent for any
bounded set C in R2:

(1) C is convex.
(2) C is T-difference-separable.
(3) C is H-difference-separable.

However, as mentioned before, in higher dimensions convexity is not a
sufficient criterion for a set to be T-difference-separable (or even H-differ-
ence-separable). As it turns out compact H-difference-separable sets in R3

are exactly the ellipsoids.

Theorem 1.7. — A compact set C in R3 is H-difference-separable if
and only if it is an ellipsoid.
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One might be under the impression that the Recognition problem is
∃R-complete for every reasonable family of geometric objects of dimension
at least two. However, we show that the problem is contained in NP for
translates as well as for homothets of polygons and thus, if NP ⊊ ∃R, also
not ∃R-complete.

Theorem 1.8. — Let P be a simple polygon with integer coordinates
in R2. For the family TP of all translates of P , Recognition(TP ) is con-
tained in NP. Similarly, for the family HP of all homothets of P , Recog-
nition(HP ) is contained in NP.

Organization. We discuss membership results in Section 2, i.e., we
prove the membership parts of Theorems 1.1, 1.3 and 1.4 as well as The-
orem 1.8 and Lemma 1.2. We introduce the version of pseudohyperplane
stretchability used in our hardness reductions in Section 3. Proofs of the
hardness parts of Theorems 1.1, 1.3 and 1.4 can be found in Sections 4
and 5, respectively. In Section 6, we present present the characterizations
of difference-separable sets, namely we prove Theorems 1.6 and 1.7. We
conclude with interesting future directions in Section 7.

1.2. Related Work

In this section, we present an overview over related work on the com-
plexity class ∃R, geometric intersection graphs, and on other set systems
related to hypergraphs.

The Existential Theory of the Reals. The complexity class ∃R (pro-
nounced as ‘ER’ or ‘exists R’) is defined via its canonical complete problem
ETR (short for Existential Theory of the Reals) and contains all problems
that polynomial-time many-one reduce to it. In an ETR instance, we are
given a sentence of the form

∃x1, . . . , xn ∈ R : φ(x1, . . . , xn),

where φ is a well-formed and quantifier-free formula consisting of polyno-
mial equations and inequalities in the variables and the logical connectives
{∧, ∨, ¬}. The goal is to decide whether this sentence is true.

The complexity class ∃R gains its importance from its numerous influ-
ential complete problems. Important ∃R-completeness results include the
realizability of abstract order types [44, 59], geometric linkages [51], and
the recognition of geometric intersection graphs, as further discussed below.

Innov. Graph Theory 2, 2025, pp. 157–190



RECOGNIZING GEOMETRIC HYPERGRAPHS 163

More results concern graph drawing [22, 23, 36, 52], the Hausdorff dis-
tance [31], polytopes [21, 49], Nash-equilibria [8, 11, 12, 27, 55], training
neural networks [3, 10], matrix factorization [19, 56, 57, 58, 65], continuous
constraint satisfaction problems [43], geometric packing [5], the art gallery
problem [2, 63], and covering polygons with convex polygons [1]. For more
details, consider the survey by Schaefer, Cardinal, and Miltzow [53].

Geometric Hypergraphs. Many aspects of hypergraphs with geomet-
ric representations have been studied. Hypergraphs represented by touch-
ing polygons in R3 have been studied by Evans et al. [25]. Bounds on
the number of hyperedges in hypergraphs representable by homothets of
a fixed convex set have been established by Axenovich and Ueckerdt [7].
Smorodinsky studied the chromatic number and the complexity of coloring
of hypergraphs represented by various types of sets in the plane [61]. Dey
and Pach [20] generalize many extremal properties of geometric graphs to
hypergraphs where the hyperedges are induced simplices of some point set
in Rd. Haussler and Welzl [29] defined ϵ-nets, subsets of vertices of hyper-
graphs called range spaces with nice properties. Such ϵ-nets of geometric
hypergraphs have been studied quite intensely [6, 39, 46, 47].

While there are many structural results, we are not aware of any re-
search into the complexity of recognizing hypergraphs given by geometric
representations, other than the recognition of embeddability of simplicial
complexes, as we will discuss in the next paragraph.

Other Representations of Hypergraphs. Hypergraphs are in close
relation with abstract simplicial complexes. In particular, an abstract sim-
plicial complex (complex for short) is a set system that is closed under
taking subsets. A k-complex is a complex in which the maximum size of
a set is k. In a geometric representation of an abstract simplicial com-
plex H = (V, E) each ℓ-set of E is represented by a ℓ-simplex such that
two simplices of any two sets intersect exactly in the simplex defined by
their intersection (and are disjoint in case of an empty intersection). Note
that 1-complexes are graphs and hence deciding the representability in the
plane corresponds to graph planarity (which is in P). In stark contrast,
Abrahamsen, Kleist and Miltzow recently showed that deciding whether a
2-complex has a geometric embedding in R3 is ∃R-complete [4]; they also
prove hardness for other dimensions. Similarly, piecewise linear embeddings
of simplicial complexes have been studied [15, 16, 17, 38, 40, 42, 60].
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Recognizing Geometric Intersection Graphs. Given a set of geo-
metric objects, its intersection graph has a vertex for each object, and an
edge between any two intersecting objects. The complexity of recogniz-
ing geometric intersection graphs has been studied for various geometric
objects. We summarize these results in Figure 1.3.

unit interval

intervalunit disk

disk circle chord

downward ray

orthogonal ray

ray

orthogonal unit segment

orthogonal segment

unit segmentouter segment

k-polyline

convex

segment

outer string

string

P
NP-complete
∃R-complete

unknown

Figure 1.3. Containment relations of geometric intersection graphs.
Recognition of a green class is in P, of a grey class is NP-complete, of
a blue class is ∃R-complete, and of a white class is unknown.

While intersection graphs of circle chords (Spinnrad [62]), unit inter-
vals (Looges and Olariu [35]) and intervals (Booth and Lueker [13]) can
be recognized in polynomial time, recognizing string graphs (Schaefer and
Sedgwick [54]) is NP-complete. In contrast, ∃R-completeness of recogniz-
ing intersection graphs has been proved for (unit) disks by McDiarmid and
Müller [41], convex sets by Schaefer [50], downward rays by Cardinal et
al. [18], outer segments by Cardinal et al. [18], unit segments by Hoffmann
et al. [30], segments by Kratochvíl and Matoušek [34], k-polylines by Hoff-
mann et al. [30], and unit balls by Kang and Müller [33].

The existing research landscape indicates that recognition problems of
intersection graphs are ∃R-complete in case that the family of objects sat-
isfy two conditions: Firstly, they need to be “geometrically solid”, i.e., not
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strings. Secondly, some non-linearity must be present by either allowing
rotations, or by the objects having some curvature. Our results indicate
that this general intuition might translate to the recognition of geometric
hypergraphs.

2. Membership

In this section we show ∃R-membership parts of Theorems 1.1 and 1.3,
as well as Theorem 1.8 and Lemma 1.2.

2.1. Halfspaces

For a given hypergraph H, it is not difficult to formulate an ETR for-
mula describing all needed properties for a geometric representation by
halfspaces. Therefore, we get the ∃R-membership part of Theorem 1.1.

Lemma 2.1. — Fix d ⩾ 1 and let F denote the family of halfspaces
in Rd. Then Recognition(F) is contained in ∃R.

Proof. — For a given hypergraph H, we formulate an ETR formula as
follows. For each vertex/point, we create variables p = (p1, . . . , pd) to repre-
sent the point. Similarly, for each hyperedge/halfspace, we create variables
h = (h1, . . . , hd+1) to represent the coefficients of the halfspace. Then for
each point p that is supposed to be in some halfspace h, we create the
constraint:

h1p1 + . . . hdpd ⩽ hd+1.

Similarly, if p is not contained in a halfspace h, we create the constraint:

h1p1 + . . . hdpd > hd+1.

This is a valid ETR sentence that is equivalent to the representability of
H. Note that for any fixed dimension d the ETR sentence is of polynomial
size. □

The ∃R-membership part of Theorem 1.3 is obtained by providing a
simple verification algorithm [24] (similar to how NP-membership can be
shown), based on the fact that our considered set C is computable.

Lemma 2.2. — For some d ⩾ 1, let C ⊆ Rd be a computable set and
let TC be the family of all translates of C. Then, Recognition(TC) is
contained in ∃R.

Innov. Graph Theory 2, 2025, pp. 157–190
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Recall that the class NP is usually described by the existence of a witness
and a verification algorithm. The same characterization exists for ∃R using
a real verification algorithm. Instead of the witness consisting of binary
words of polynomial length, in addition a polynomial number of real-valued
numbers are allowed as a witness. Furthermore, in order to be able to use
those real numbers, the verification algorithm is allowed to work on the so-
called real RAM model of computation. The real RAM allows arithmetic
operations with real numbers in constant time [24].

Proof. — We describe a real verification algorithm as mentioned above.
The witness consists of the (real) coordinates of the points representing
the vertices and the coefficients of the translation vectors representing the
hyperedges. By definition of computable, a verification algorithm can effi-
ciently check if each point is contained in the correct sets. □

2.2. Translates and Homothets of Polygons

Here, we show Theorem 1.8, i.e., NP-membership of Recognition of
translates of a simple polygon P .

Theorem 1.8. — Let P be a simple polygon with integer coordinates
in R2. For the family TP of all translates of P , Recognition(TP ) is con-
tained in NP. Similarly, for the family HP of all homothets of P , Recog-
nition(HP ) is contained in NP.

Proof. — The proof uses a similar argument to the one used to show
that the problem of packing translates of polygons inside a polygon is in
NP [5]. We wish to find a certificate that can be tested in polynomial
time using linear programming, where the variables of the linear program
correspond to the translation and scaling vectors of our homothets, as well
as the coordinates of our points. To do this, the certificate needs to specify
linear constraints for both containment and non-containment of a point
p in a homothet of P . To get such constraints, we first triangulate the
convex hull of P , such that each edge of P appears in the triangulation.
Then, a representation of a hypergraph H by homothets of P gives rise to
a certificate as follows: For each pair of a point p and a homothet P ′ of P ,
we specify whether p lies in the convex hull of P ′. If it does, we specify in
which triangle p lies. Otherwise, we specify an edge of the convex hull for
which p and P ′ lie on opposite sides of the line through the edge. For an
illustration, consider Figure 2.1.
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p

Figure 2.1. The polygon P ′, a triangulation of its convex hull, and the
triangle that contains p.

Such a certificate can be tested in polynomial time: we create a linear
program whose variables describe the locations of the points p and the
translation vectors and scaling factors of each homothet of P , and whose
constraints enforce the points to lie in the regions described by the cer-
tificate. This linear program has a number of constraints and variables
polynomial in the size of H, and can thus be solved in polynomial time.

The solution of this linear program gives the location of the points and
the translation vectors and scaling factors of the polygons. This implies
that these coordinates are all polynomial and could be used as a certificate
directly.

For Recognition(TP), we use the same machinery but fix the scaling
factors to be 1. □

2.3. 1D Versions

Next, we show that the one-dimensional problems can be solved in poly-
nomial time.

Lemma 1.2. — Let C ⊆ R be a convex set, and let TC be the family
of all translates of C and HC be the family of all homothets of C. Then
Recognition(TC) and Recognition(HC) are polynomial time solvable.

Proof. — We can assume that C is bounded because the problem is
trivial for C = R, and for C being a halfspace both Recognition(TC)
and Recognition(HC) are solved by testing whether the vertices of H

can be sorted such that each hyperedge forms a prefix, i.e., the hyperedges
ordered by inclusion are a total order. It thus remains to consider the case
where C is an interval, and thus all hyperedges have to be represented by
intervals (homothets), or by unit intervals (translates). In the following, we
will ensure a representation (if it exists) where all event points are unique.
Thus, we may assume without loss of generality that C is closed.
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C1 C2

G1 G2

(a)

C1 C2

G1 G2

(b)

Figure 2.2. Illustration of the proof of Lemma 1.2: removing undesired
intersections without introducing containment relations.

Let H = (V, E) be a hypergraph. We construct the following incidence
graph G = (U, F ). For each vertex v ∈ V , we add a vertex uv to U and for
each hyperedge e ∈ E, we add a vertex ue to U . Moreover, we insert an
edge uvue in F if v ∈ e and an edge ueue′ if e ∩ e′ ̸= ∅. In the following we
show how we can check properties of G in order to determine whether H

is representable by HC and/or TC .

Homothets. As a first step, we argue that H has a geometric repre-
sentation with homothets of C if and only if G is an interval graph. We
consider representations where the endpoints of intervals (and points) are
unique, i.e., no two endpoints/points have the same coordinate.

Consider an interval representation of G. By construction of G, the neigh-
borhood N(uv) of each uv is a clique. By Helly’s theorem, there thus exists
a point p within the interval of uv that intersects all intervals of N(uv).
Hence, we may shrink the interval of each uv to the point p. This yields a
geometric representation of H with intervals, i.e., H is representable by HC .

The reverse direction is a little bit more intricate. Note that in a represen-
tation (P, S) of H, intervals (representing the hyperedges E) may intersect
even if they do not share any point in P . However, we may (easily) modify
R to remove these undesired intersections. To this end, consider two sets C1
and C2 with an undesired non-empty intersection C1 ∩ C2. Without loss of
generality, we may assume that C1 ∩C2 corresponds to the interval between
the start of C2 and the end of C1; otherwise one set contains the other and
contains no point from P . Now, we consider all event points within C1 ∩C2
and partition the corresponding sets into two groups G1 and G2 depending
on whether they are end points or start points within C1 ∩C2, respectively;
note that no set Ci is contained in C1 ∩ C2 as it would contain no point
from P . For an illustration, consider Figure 2.2a.

We reassign the event points within C1 ∩ C2 such that all events of G1
appear before G2 and the order within each group is maintained, see Fig-
ure 2.2b. Note that this operation never changes whether or not some set
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contains another. (We remark that we could just swap the end of C1 with
the start of C2 when just considering homothets, however this would not
maintain the no-containment-property which we use in the case of trans-
lates below.) After removing all undesired properties, we have an interval
representation of G.

Thus, when considering homothets, we may check in time O(|U | + |F |)
whether G is an interval graph and return the answer [14, 28].

Translates. Similarly, it holds true that H has a geometric representa-
tion with translates of C if and only if G has an interval representation
where no hyperedge-interval contains another hyperedge-interval; we call
such a interval representation h-proper. The only-if direction follows from
the modifications of an interval representation represented above; we may
clearly assume that G is an interval graph, otherwise H is not representable
by TC . For the other direction, recall that a graph is a unit interval graph
if and only if it is a proper interval graph, i.e., no interval contains another
interval. In particular, from any proper interval representation, a unit in-
terval representation with the same ordering of the start (and end vertices)
can be computed in polynomial time [26, Section 3].

Consequently, as a first step, we check whether G[E] has a proper in-
terval representation. If not, we return no. Otherwise, we consider such a
representation R and aim to incorporate points for V . To do so, we exploit
the following fact. The left-right ordering of a twin-free unit interval graph
is unique (up to reversing); we consider two vertices u and v of a graph to
be twins if N [v] = N [u], i.e., if their closed neighborhoods coincide. Hence
the only degrees of freedom of R is the ordering between vertices with same
neighborhoods (twins). Suppose that in R all intervals of twins coincide.

Consider a set S of twins and the union of points PS contained in at least
one but not all of them. For an illustration, consider the thick interval in
Figure 2.3a. There is a natural poset on PS where each point p is associ-

S

(a)

S

PS

Sp

p

(b)

Figure 2.3. Illustration of the proof of Lemma 1.2 for translates. Con-
sidering a set S of twins (in red), we aim to find an ordering such that
the points of PS can be added as illustrated in (b).

ated with the subset Sp of twins containing it and the subsets are ordered
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by inclusion; without loss of generality we may assume that no two Sp’s
coincide, otherwise we treat the corresponding points momentarily as one
point and insert more copies in small enough vicinity at the very end. It
is easy to see that the width of this poset is at most 2, otherwise G is not
h-proper. To this end, note that any representation restricted to S ∪ PS is
essentially as depicted in Figure 2.3b, where some of the depicted points
may not be present. Clearly, the left group of points and the right group of
points form a chain. Thus, the two chains of the poset allow us to partition
PS into two sets Pℓ and Pr; if S is not an isolated clique, a neighbor will
make the left/right groups unique, otherwise we call them arbitrarily. In
order to place p ∈ Pℓ, the intervals of Sp must start before the intervals in
S \ Sp. Similarly, to place p ∈ Pr, the intervals of Sp must end after the
intervals in S \ Sp. If there exists a total order of the twins that satisfies all
conditions, we insert them; otherwise we have a no-certificate. We repeat
this process until no two intervals coincide.

Finally, we check if for each point there exists a suitable location. If so,
we have a desired representation. Otherwise, by the uniqueness of twin-free
representations and our careful insertion of twins, there exists no represen-
tation. □

We remark that the recognition problem of interval graphs where each
vertex is represented by a point or a unit interval was studied by Raut-
enbach and Szwarcfiter [48]; however, in their setting each vertex may be
represented by either object while the assignment is fixed in our setting.

3. Pseudohyperplane Stretchability

In this section we introduce the problem used to show the ∃R-hardness
parts of Theorems 1.3 and 1.4.

A hyperplane arrangement in Rd is an arrangement of hyperplanes in Rd.
We are interested in a generalization. A pseudohyperplane arrangement in
Rd is an arrangement of pseudohyperplanes, where a pseudohyperplane is
a set homeomorphic to a hyperplane, and each intersection of pseudohy-
perplanes is homeomorphic to a plane of some dimension. In the classical
definition, every set of d pseudohyperplanes has a non-empty intersection.
Here, we consider partial pseudohyperplane arrangements (PPHAs), where
not necessarily every set of ⩽ d pseudohyperplanes has a common intersec-
tion.

A PPHA is simple if, for all k = 1, . . . , d, no more than k pseudohy-
perplanes intersect in a space of dimension d − k. In particular, no d + 1
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pseudohyperplanes have a common intersection. We call the 0-dimensional
intersection points of d pseudohyperplanes the vertices of the arrangement.
A simple PPHA A is stretchable if there exists a hyperplane arrangement A′

such that each vertex in A also exists in A′ and each (pseudo-)hyperplane
splits this set of vertices the same way in A and A′. In other words, each
vertex of A lies on the correct side of each hyperplane in A’. We then call
the hyperplane arrangement A′ a stretching of A.

The decision problem d-Stretchability asks whether a simple PPHA
in Rd is stretchable. For d = 2, d-Stretchability contains the stretcha-
bility of simple pseudoline arrangements which is known to be ∃R-hard [44,
59]. It is straightforward to prove ∃R-hardness for all d ⩾ 2.

Theorem 3.1. — d-Stretchability is ∃R-hard for all d ⩾ 2.

Proof. — We reduce from stretchability of simple pseudoline arrange-
ments, which is ∃R-hard as shown in [44, 59].

Consider a simple pseudoline arrangement L in the x1x2-plane. We con-
sider d − 2 pairwise orthogonal hyperplanes h1, . . . , hd−2 whose common
intersection is the x1x2-plane; e.g., the hyperplanes defined xi = 0 for
i = 3, . . . , d. The intersection of these hyperplanes serves as a canvas in
which we aim to embed L. We extend each pseudoline ℓ to a pseudohyper-
plane hℓ by extending it orthogonally to all h1, . . . , hd−2, see Figure 3.1.

Figure 3.1. Extending a simple pseudoline arrangement (dashed) to
a partial pseudohyperplane arrangement in R3. The grey hyperplane
serves as the “canvas”.

Clearly, the resulting pseudohyperplane arrangement A can be built in
polynomial time. Note that all intersection points of d pseudohyperplanes
in A correspond to intersection points of L.

If L is stretchable, A is clearly stretchable, as the above construction can
be applied to the stretched line arrangement of L.
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If A is stretchable, L is stretchable, since restricting each hyperplane hℓ

to the intersection of the hyperplanes h1, . . . , hd−2 yields a line arrangement
which is equivalent to L.

As we have thus reduced stretchability of simple pseudoline arrangements
to d-Stretchability, this concludes the proof. □

Similar extensions of pseudoline stretchability to higher dimensions
have been studied in the literature. For example, Mnëv’s universality theo-
rem [44] extends to higher dimensions, however we are not aware of any ex-
isting proofs that it also implies ∃R-hardness in d > 2. Kang and Müller [33]
also studied a similar version of stretchability of partial arrangements of
pseudohyperplanes.

4. Hardness for Families of Halfspaces

We now present the hardness part of Theorem 1.1.

Theorem 1.1 (Tanenbaum, Goodrich, Scheinerman [64]). — For ev-
ery d ⩾ 2, Recognition(F) is ∃R-complete for the family F of halfspaces
in Rd.

Proof. — We reduce from d-Stretchability. Let A be a simple PPHA.
For an example consider Figure 4.1a. In a first step, we insert a parallel
twin ℓ′ for each pseudohyperplane ℓ. The twin is close enough to ℓ such that
ℓ and ℓ′ have the same intersection pattern. Since ℓ and ℓ′ are parallel, they
do not intersect each other. This yields an arrangement A′, see Figure 4.1b.

(a) (b) (c)

Figure 4.1. Construction of the hypergraph H. (a) A simple PPHA A.
(b) The arrangement A′ obtained by inserting twins. (c) The vertices
of H are the points in the cells, hyperedges of H are defined by the
pseudohalfspaces; the gray region shows one of the hyperedges.

In a second step, we introduce a point in each d-dimensional cell of A′;
each point represents a vertex in our hypergraph H. Lastly, we define a
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hyperedge for each pseudohyperplane ℓ of A′: The hyperedge contains all
of the points that lie on the side of ℓ that the twin pseudohyperplane
ℓ′ lies in, see Figure 4.1c. Note that we define such a hyperedge for every
pseudohyperplane of A′. Thus, for every pseudohyperplane ℓ of the original
arrangement A we define two hyperedges, whose union contains all vertices
of H.

It remains to show that H is representable by halfspaces if and only if
A is stretchable. If A is stretchable, the construction of a representation
of H is straightforward: Consider a hyperplane arrangement B which is a
stretching of A. Then, for each hyperplane, we add a parallel hyperplane
very close, so that their intersection patterns coincide. This results in a
hyperplane arrangement B′. We now prove that every d-dimensional cell of
A′ must also exist in B′. We show this by considering the 0-dimensional
cells, which we call vertices. First, note that each d-dimensional cell of A′

corresponds to a cell of A, which has at least one vertex on its boundary.
All vertices of A exist in B by definition of a stretching. Furthermore, the
subarrangement of the d hyperplanes in B intersecting in this vertex must
be simple, since their intersection could not be 0-dimensional otherwise. In
the twinned hyperplane arrangement B′, all 3d of the d-dimensional cells
incident to the parallelotope formed by the planes through this vertex and
their twinned copies (a cell is given by the following choice for each of
the hyperplane pairs: above both hyperplanes, between the hyperplanes,
or below both hyperplanes) must exist. This proves that all d-dimensional
cells of A′ also exist in B′. Inserting a point in each such d-dimensional cell
and considering the (correct) halfspaces bounded by the hyperplanes of B′

yields a representation of H.
We now consider the reverse direction. Let (P, H) be a tuple of points

and halfspaces representing H. Let hi,1 and hi,2 be the two halfspaces
associated with a pseudohyperplane ℓi of A. Let pi denote the (d − 1)-
dimensional hyperplane bounding hi,1. We show that the family {pi}i of
these hyperplanes is a stretching of A.

For each intersection point q of d pseudohyperplanes ℓ1, . . . ℓd in A, we
consider the corresponding 2d pseudohyperplanes in A′. The PPHA A′ con-
tains 3d d-dimensional cells incident to their 2d intersections; each of which
contains a point. We first show that the associated halfspaces must induce
at least 3d cells, one of which is bounded and represents the intersection
point, see also Figure 4.2a: These 3d points have pairwise distinct charac-
teristics of whether or not they are contained in each of the 2d halfspaces ,
i.e., for every pair of points there exists a halfspace containing one but not
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the other. Thus, these points need to lie in distinct cells of the arrangement
of halfspaces, which proves the claim.

(a) (b) (c)

Figure 4.2. Illustration for the proof of Theorem 1.1 for d = 2 show-
ing that representability of H implies stretchability of A. (a) Any two
pseudolines ℓi, ℓj in A have four corresponding lines bounding the re-
spective halfplanes in H; these four lines induce 9 cells, each of which
contains a point. (b) Each point in P belongs to exactly one of these 9
cells; the central bounded cell contains a unique point representing the
intersection of ℓi and ℓj . (c) If the central bounded cell was intersected
by a line pk with k ̸= i, j, then the 9 points do not lie on one side of pk.

Moreover, every point in P belongs to exactly one of these 3d cells. In
particular, the central bounded cell, denoted by c(q), contains exactly one
point of P , see Figure 4.2b.

Now, we argue that the complete cell c(q) (and thus in particular the
intersection point of the hyperplanes representing q) lies on the correct side
of each hyperplane p in {pi}i. Note that, by construction of the hypergraph
H, the 3d points of q lie on the same side of p. Suppose for a contradiction
that p intersects c(q), see Figure 4.2c. Then there exist two unbounded cells
incident to c(q) which lie on different sides of p; these cells can be identified
by translating p until it intersects c(q) only in the boundary. This yields a
contradiction to the fact that the 3d points of q lie on the same side of p.

We conclude that each intersection point of d pseudohyperplanes in A
also exists in the arrangement {pi}i and lies on the correct side of all
hyperplanes. Thus, {pi}i is a stretching of A and we conclude that A is
stretchable. □

5. Hardness for Families of Translates and Homothets

We are now going to prove the hardness part of Theorems 1.3 and 1.4.
To this end, consider any fixed bi-curved, and T-difference-separable set C

Innov. Graph Theory 2, 2025, pp. 157–190



RECOGNIZING GEOMETRIC HYPERGRAPHS 175

in Rd. Recall that thus C is convex. Note that we can assume C to be fully-
dimensional, since otherwise each connected component would live in some
lower-dimensional affine subspace, with no interaction between such com-
ponents. We use the same reduction from the problem d-Stretchability
as in the proof for halfspaces in the previous section, i.e., given a simple
PPHA A we perform the doubling procedure and define the hypergraph H

as illustrated in Figure 4.1. We will now show that this constructed hyper-
graph H is representable by translates of C if and only if the given PPHA
A is stretchable. In fact, we present two lemmas, one for each direction,
that are strong enough to imply both, Theorems 1.3 and 1.4.

Lemma 5.1. — If A is stretchable, H is representable by translates of C.

The idea behind the proof is that a stretching A′ of A can be scaled and
stretched in such a way that every hyperplane has a normal vector close to
the vector v witnessing that C is bi-curved, and such that all the vertices lie
within some sufficiently small box. Then, for every halfspace h± bounded by
some hyperplane h in A’, there exists a translate of C which approximates
h± within the small box. This intuition is shown in Figure 5.1a. Since the
hyperplane arrangement is simple, and there is some slack between the
hyperplanes bounding the two twin halfspaces (as we argued above in the
proof of Theorem 1.1), such an approximation is sufficient.

h

C

v + ϵ

(a)

h

r = 10
√
d

Cf

w

(b)

Figure 5.1. Illustrations for the proof of Lemma 5.1. a) Within the
small box (dark grey), the translate of C (green) approximates the
halfspace (light grey) bounded by h. b) An illustration of the require-
ment on the scaling factor f . The set Cf must contain the grey region.
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Proof. — We assume that A is stretchable. We already proved in the
previous section that thus there exists an arrangement of hyperplanes, in
which we can create a twin of each hyperplane (with a tiny distance α

between the twins), and in which we can place all the vertices of H in
the appropriate d-dimensional cells. If a vertex is placed between two twin
hyperplanes, we assume it to be equidistant to them. As before, we denote
this arrangement of hyperplanes and points by B′.

Let v be the unit vector certifying that C is bi-curved; recall the definition
in Section 1. Therefore, there exists ϵ > 0, such that any unit vector w with
∥w − v∥2 ⩽ ε also fulfills the conditions to certify that C is bi-curved.

We now assume that B′ fulfills the following properties:

(1) the normal vectors of all hyperplanes have distance at most ε to v

or to −v

(2) every intersection point of d hyperplanes as well as every point
representing a vertex of H, is contained in [−1, 1]d.

Both properties can be achieved by applying some affine transformation
with positive determinant, thus preserving the combinatorial structure of B′.

To represent the hyperedges of H, we will now use very large copies of
C. Note that technically we are not allowed to scale C, but scaling C by a
factor f is equivalent to scaling the arrangement by a factor 1/f . Let Cf

be the set C scaled by factor f .
In order to determine the necessary scaling factor f , we consider the

curvature of Cf in all the points where the tangent hyperplanes of Cf

with normal vector w for ∥w − v∥2 ⩽ ε intersect Cf . In each such tangent
hyperplane h with (unit) normal vector w, we draw a (d−1)-ball B of radius
10

√
d around the touching point h ∩ Cf . Note that 10

√
d is larger than the

length of any line segment contained in the box [−1, 1]d. Now, f has to be
large enough such that Cf contains every point p + w · λ, for p ∈ B and
α/10 ⩽ λ ⩽ 10

√
d. This ensures that the boundary of Cf does not curve

away from the tangent hyperplane too quickly, and that Cf is “thick”. In
other words, Cf locally behaves like an only very slightly curved halfspace.
See Figure 5.1 for an illustration of this requirement on Cf .

We now replace each hyperplane h of the arrangement B′ by a translate
Cf

h of Cf , placed such that h is a tangent hyperplane of Cf
h , the single

point h∩Cf
h lies within the box [−1, 1]d, and Cf

h lies completely to the side
of h containing its twin hyperplane. It remains to prove that Cf

h contains
exactly those points of B′ which are on this side of h. Firstly, Cf

h cannot
contain more points, since Cf

h is a subset of the halfspace delimited by
h containing its twin hyperplane. Second, we claim that Cf

h contains all
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these points. To see this, note that within the box [−1, 1]d containing all
points, the boundary of Cf

h is close enough to h that it must contain all
points between h and its twin, since these points are located equidistant
to the two hyperplanes. Furthermore, all points on the other side of the
twin hyperplane are also contained in Cf

h since within the box [−1, 1]d, the
boundary δ(Cf

h ) lies completely between h and its twin hyperplane. □

Now we consider the reverse direction.

Lemma 5.2. — If the hypergraph H is representable by a difference-
separable family F , then A is stretchable.

Proof. — Consider a representation of H with F . By construction, the
two members Ci,r, Ci,l of F corresponding to the two hyperedges of each
pseudohyperplane ℓi must intersect as they contain at least one common
point. For each pseudohyperplane ℓi of A, we consider some hyperplane pi

which separates Ci,r \Ci,l from Ci,l \Ci,r. Such a hyperplane exists because
F is difference-separable. Let P := {pi}i be the hyperplane arrangement
consisting of all these separating hyperplanes. We aim to show that P is a
stretching of A.

To this end, consider d pseudohyperplanes ℓ1, . . . , ℓd which intersect in A.
Figure 5.2 displays the case d = 2. Furthermore, consider one more pseu-
dohyperplane ℓ′, and let p′, C ′

r, C ′
l denote the separator hyperplane and

members of F corresponding to ℓ′. We show that the intersection Ip :=
p1 ∩ . . . ∩ pd is a single point which lies on the same side of p′ as the point
Iℓ := ℓ1 ∩ . . . ∩ ℓd lies of ℓ′.

ℓ1

ℓ2

ℓ′

Iℓ

(a) Pseudohyperplanes ℓ1, ℓ2, ℓ′ in A

p1

p2 p′

Ip

hl

C ′
l C ′

r

hr

(b) Hyperplanes p1, p2, p′ in P.

Figure 5.2. Illustration for the proof of Lemma 5.2 for d = 2. Some
pseudohyperplanes in A and their corresponding hyperplanes in P.

The hyperplane p′ divides the space into two halfspaces hr and hl such
that C ′

r\C ′
l ⊆ hr and C ′

l\C ′
r ⊆ hl. By construction, the two hyperedges

defined for ℓ′ cover all vertices of H and the vertices in the cells around Iℓ
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belong to only one hyperedge. Suppose without loss of generality that these
vertices only belong to the hyperedge represented by C ′

l . We will show that
the intersection Ip must then be a point in hl.

We first show that the intersection Ip is a point, i.e., 0-dimensional.
Consider all 2d d-dimensional cells of A around Iℓ. The construction of H

implies that each such cells contains a distinct point, and these points must
all lie in distinct cells of the sub-arrangement of the involved hyperplanes
p1, . . . , pd. Assuming that Ip is not a single point, this sub-arrangement is
not simple, and the hyperplanes divide space into strictly fewer than 2d

cells, which results in a contradiction.
Next we prove that Ip is in hl. Assume towards a contradiction that

Ip ∈ hr, see also Figure 5.3. Consider the d lines that are formed by the
intersections of subsets of d−1 hyperplanes among p1, . . . , pd. Each of these
lines is the union of two rays beginning at Ip. Observe that the hyperplane p′

can only intersect one of the two rays forming each line. Let S be the convex
cone centered at Ip defined by the d non-intersected rays. Observe that S

does not intersect p′, so S must be fully contained in hr, i.e., S ∩ hl = ∅.
Note, however, by the construction of the hypergraph, there must be a

point that lies in S ∩ (C ′
l \ C ′

r) ⊆ S ∩ hl, which is a contradiction.
We conclude that P is a stretching of A, and thus A is stretchable. □

Lemmas 5.1 and 5.2 combined now prove hardness of the recognition
problem for the family of translates of C as well as for the superfamily of
homothets. This is due to the fact that Lemma 5.1 guarantees a represen-
tation using only translates and Lemma 5.2 allows to reconstruct a line
arrangement even from any representation with members of a difference-
separable family. This completes the proof of Theorems 1.3 and 1.4.

Together with Lemmata 6.3 and 6.4, Theorems 1.3 and 1.4 imply Corol-
lary 1.5.

p1

p2 p′

Ip

hl hr

S

Figure 5.3. Illustration for the proof of Lemma 5.2 for d = 2. The cone
S must intersect C ′

l \ C ′
r, which contradicts Ip lying in hr.
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6. Characterizations of Difference-Separable Sets

In this section, we aim to better understand which bounded sets are T-
/H-difference-separable. As it turns out convexity is necessary. We show
that in the plane convexity is also sufficient for H-difference-separability
(and thus T-difference-separability), however this is not the case for higher
dimensions. Afterwards, we characterize compact H-difference-separable
sets in three dimensions.

6.1. In 2D

We present a full characterization of bounded sets in the plane, namely,
we show that T-difference-separability and H-difference-separability are
equivalent to convexity.

Theorem 1.6. — The following statements are equivalent for any
bounded set C in R2:

(1) C is convex.
(2) C is T-difference-separable.
(3) C is H-difference-separable.

We show this statement in two steps. Firstly we show in Lemma 6.1
that convexity is necessary in all dimensions already for T-difference-sepa-
rability. Secondly, we show that every convex bounded set in R2 is H-dif-
ference-separable.

Lemma 6.1. — If C ⊂ Rd is bounded and T-difference-separable, then
C is convex.

Proof. — Consider a set C that is not convex. Then there exists a seg-
ment s such that its endpoints are contained in C and its midpoint is not.
Without loss of generality we assume that s is vertical. We consider two
translates C1 and C2 of C such that the midpoint of each segment coincides
with an endpoint of the other segment, see also Figure 6.1. In other words,
C1 is shifted below C2 by half the length of s.

Now, we consider the (vertical) line ℓ supporting s1 (and s2) and orient it
from bottom to top. By boundedness and the fact that C1 is shifted below
C2, ℓ intersects C1 first and thus contains a point from C1 \ C2. Then ℓ

meets the midpoint of s1 which is contained in C2 \ C1, afterwards ℓ meets
the midpoint of s2 which is contained in C1 \ C2. As points from C1 \ C2
and C2 \ C1 lie alternatingly on a line, these two sets cannot be separated
by a line. Thus C is not T-difference-separable. □
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Figure 6.1. Illustration for the proof of Lemma 6.1 for d = 2.

We remark that with similar ideas we obtain a stronger necessary condi-
tion in general (without assuming boundedness): If C is T-difference-sepa-
rable, then for every line ℓ, either ℓ ∩ C is convex (if C is not bi-infinite in
the direction of ℓ) or ℓ ∩ C is convex. It is easy to see that this condition is
also sufficient in 1D. In particular, C ⊂ R1 is T-difference-separable if and
only if C or its complement are convex (i.e., an interval).

Next we show that convexity implies H-difference-separability. To this
end, we make use of the following fact (we present the statement in a more
precise way).

Lemma 6.2 ([37], Corollary 2.1.2.2). — The intersection of the bound-
aries of two different but homothetic convex compact sets in R2 consists
of at most two connected components each of which is either a point or a
segment.

We make use of this fact in order to show the following.

Lemma 6.3. — Every convex bounded set C in R2 is H-difference-sep-
arable.

Proof. — Consider two homothetic copies C1 and C2 of C. If C1 \ C2 or
C2\C1 is empty, we are done. Consequently, we assume that both difference
sets are non-empty. By Lemma 6.2, the intersection of the boundaries ∂C1
and ∂C2 consists of at most two connected components each of which is
either a point or a segment. As the statement is trivial for segments, we may
assume that C is two-dimensional, i.e., the boundaries are closed Jordan
curves. First, we present arguments for the case when C1 and C2 coincide
on their boundary, i.e., if (∂C1 ∩ ∂C2) ∩ C1 = (∂C1 ∩ ∂C2) ∩ C2; e.g., this
is the case if C is closed or open.

If ∂C1 ∩ ∂C2 has one connected component, then, because C1 does not
contain C2 and vice versa, either C1 and C2 only differ in their boundary
or their interiors are disjoint; otherwise the Jordan curves intersect twice.
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Hence, the hyperplane separation theorem for convex sets guarantees that
C1 and C2 are difference-separable.

Now, we consider the case that ∂C1 ∩ ∂C2 contains two components. In
this case, we may choose any two points p1 and p2, one in each component,
e.g., two closest points, see also Figure 6.2a. We prove that the line ℓ

through p1 and p2 separates C1 \ C2 and C2 \ C1: Consider x1 ∈ C1 \ C2
and suppose there exists x2 ∈ C2/C1 on the same side of ℓ. Then, by the
Jordan curve theorem and convexity, ∂C1 and ∂C2 intersect in a point x /∈ ℓ

such that the line supporting xpi separates x1 and x2. By assumption, there
exists an i ∈ {1, 2} such that x and pi lie in the same component of ∂C1 ∩
∂C2, i.e., both ∂C1 and ∂C2 contain the segment pix. However, because C1
and C2 do not differ in boundary points, this yields a contradiction to the
fact that xi ∈ Ci \ Ci±1.

x1

x2

x

p1

p2

ℓ

(a)

x2

pix′
2

(b)

Figure 6.2. Illustration for the proof of Lemma 6.3.

It remains to consider the case that some boundary points of C belong
to C while others do not. If ∂C1 ∩ ∂C2 consists of a single segment s, then
it remains to consider the case that the difference sets are contained in
∂C1 ∩ ∂C2. By convexity, the points of Ci ∩ ∂Ci form an interval and the
differences of two intervals can easily be separated.

If ∂C1 ∩ ∂C2 consists of two segments s1 and s2, we may without loss of
generality assume that the relative translation vector of C1 and C2 is (non-
vanishing) horizontal, and C1 is not right of C2. It follows that s1 and s2 are
horizontal; otherwise ∂C1 ∩ ∂C2 consists of one component by convexity:
Excluding potential horizontal segments, ∂C has a left and right boundary
curve that starts from a topmost point and ends in a bottommost point.
If ∂C1 ∩ ∂C2 contains a non-horizontal segment, then this is supported by
a segment from C1 in the right boundary curve and a segment from C2
in the left boundary curve. By convexity, the shared segments supports a
separating line and thus C1 and C2 are otherwise disjoint.

Hence, on each segment sj , we choose pj as the leftmost point of sj if
C1 ∩ sj = ∅, otherwise we choose the supremum (w.r.t. the x-coordinate)
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of sj ∩ C1, i.e., the right boundary point of the segment sj ∩ C1. We show
that the line ℓ through p1 and p2 separates C1 \ C2 and C2 \ C1. Suppose
there exists xi ∈ Ci \Ci±1 for i ∈ {1, 2} left of ℓ. We may assume that x1 is
an interior point of C1 \ C2 because C2 is (2-dimensional and) a horizontal
translate of C1 lying to its right. As above, it follows that one xi, namely x2,
belongs to ∂C1 ∩ ∂C2, i.e., to some sj . The fact that x2 ∈ sj is left of pj

implies that C1 ∩ sj ̸= ∅. By definition of pj , there exists a point in sj ∩ C1
right of x2. Moreover, as C2 is a horizontal translate of C1, there exists
x′

2 ∈ C1 ∩ ℓj left of x2, see also Figure 6.2b. By convexity of C1, it follows
that x2 ∈ C1, a contradiction.

For the case that there exists xi ∈ Ci \ Ci±1 for i ∈ {1, 2} right of ℓ, we
may analogously assume that x2 is an interior point. It follows that x1 is
contained in some sj and right of pj , a contradiction to the choice of pj . □

Together, Lemmata 6.1 and 6.3 imply Theorem 1.6, so this finishes the
proof.

6.2. In 3D

In three dimensions, we can show that H-difference-separable compact
sets are exactly the ellipsoids.

Theorem 1.7. — A compact set C in R3 is H-difference-separable if
and only if it is an ellipsoid.

We suspect this to be true in higher dimensions as well, however our proof
only generalizes to higher dimensions for the following, simpler direction.

Lemma 6.4. — Every ellipsoid in R3 is H-difference-separable (and thus
also T-difference-separable).

Proof. — As a set of homothetic ellipsoids can be transformed to a set
of balls by an affine transformation, it suffices to show that a ball in Rd

is H-difference-separable: It is a well-known fact that the intersection of
two d-spheres in Rd is a (d − 1)-sphere (or a point or empty) that lies in a
hyperplane (orthogonal to the line connecting the centers of the spheres).
For instance, consider a sphere S1 of radius R centered at the origin and a
sphere S2 of radius r at (δ, 0, . . . , 0) with δ > 0 and R ⩾ r. If δ > R+r, the
intersection is empty. If δ = R + r, the intersection is a point. Hence, we
consider the case that 0 < δ < r + R. Any point in S1 ∩ S2 must lie in the
hyperplane x1 = α for α := (r2 − R2 + δ2)/2δ. It is easy to check that the
hyperplane x1 = α separates B1 \ B2 from B2 \ B1: If x ∈ B1 and x1 > α,

Innov. Graph Theory 2, 2025, pp. 157–190



RECOGNIZING GEOMETRIC HYPERGRAPHS 183

then x ∈ B2 because (x1 − δ)2 − x2
1 ⩽ R2 − r2 ⇐⇒ x1 ⩾ α. Similarly,

x ∈ B2 and x1 < α implies x ∈ B1. □

Now, we consider the reverse direction. We show that H-difference-sepa-
rability of C implies that every two parallel (nonempty) sections of C are
homothetic. A section of C is the non-empty intersection of C with a plane.
As a matter of fact this property characterizes ellipsoids in R3.

Theorem 6.5 (Kakeya [32] and Nakagawa [45]). — Let C ⊂ R3 be a
compact convex body. Every two parallel (non-empty) sections of C are
homothetic if and only if C is an ellipsoid.

It hence remains to prove the property of parallel sections. To this end,
we start with a useful property of non-homothetic sets in the plane.

Lemma 6.6. — Let A and B be two non-homothetic convex compact
sets in R2. Then there exists a homothet A′ of A and a homothet B′ of B

such that B′ \ A′ and A′ \ B′ cannot be separated by a line.

Proof. — We first scale and translate A and B such that their areas and
centroids coincide. We then argue that the resulting sets A′ and B′ fulfill
the condition. For an illustration, consider Figure 6.3.

c ℓ

a
b

(a)

c ℓ

a
b

b′

ℓ′

x

a′

(b)

Figure 6.3. Illustration for the proof of Lemma 6.6.

Because A and B are non-homothetic, A′ and B′ do not coincide. Thus
there exist points a ∈ A′ \ B′ and b ∈ B′ \ A′. We consider a line ℓ through
the centroid c such that a and b lie in the same halfplane H bounded by ℓ,
e.g., the line through c which is parallel to the segment ab.

Because a ∈ A′ \B′ and b ∈ B′ \A′, c ∈ A′ ∩B′, the boundaries of A′ and
B′ cross at least once in H. Let x denote the clockwise first crossing point
(when turning a line in clockwise direction around c starting with ℓ) and
consider the line ℓ′ through x and c. Without loss of generality, we may
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assume that ℓ′ separates a and b; otherwise there exist points with these
properties and we consider them instead. Because a ∈ A′ \ B′ and c is the
centroid of both sets, there exists a point b′ ∈ B′ in the halfplane bounded
by ℓ′ not containing b. Similarly, we obtain a point a′ ∈ A′ \ B′ in the
halfplane bounded by ℓ′ not containing a. Note that the points appear in
the cyclic order a, b, a′, b′ around c. By convexity of A′ and B′, the points
a, b, a′, b′ lie in convex position. Consequently, A′ \ B′ and B′ \ A′ cannot
be separated by a line. □

With the help of Lemma 6.6, we show the following.

Lemma 6.7. — Let C ⊂ R3 be an H-difference-separable convex com-
pact set. Then for each vector v, all non-empty sections of C orthogonal to
v are homothets of each other.

Proof. — Suppose there exist two parallel sections A and B of C that
are not homothetic. Note that we may assume that these sections contain
interior points of C; otherwise we slightly translate the supporting planes
of the sections. Then we translate a copy C ′ of C such that A = C ∩ H

and B = C ′ ∩ H for some hyperplane H orthogonal to v. By Lemma 6.6,
we can scale C ′ around a center within H and move it orthogonally to v,
such that for the resulting copy C ′′ and B′′ := C ′′ ∩ H, the sets B′′ \ A

and A \ B′′ cannot be separated by a line. Therefore any plane separating
C \ C ′′ and C ′′ \ C must be equal to H. However, because A and B are
interior sections of C, and C is compact and convex, C ′′ \ C and C \ C ′′

both occur on both sides of H: Let x be point of C ∩ C ′′ on either side of
H and let y be a point in A \ B′′ (or B′′ \ A). By convexity the segment
xy is contained in C (or C ′′) and by compactness of C ′′ (or C) some point
strictly between x and y does not belong to C ′′ (or C), see also Figure 6.4.
Therefore, H does not separate C ′′ \ C and C \ C ′′ and hence C is not
H-difference-separable, a contradiction. □

H

B′′

A

x

Figure 6.4. Illustration for the proof of Lemma 6.7.

Together Lemma 6.7 and Theorem 6.5 yield Theorem 1.7.
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7. Future Directions

We conclude with a list of interesting open problems: We have seen that
for bounded sets T-difference-separability and H-difference-separability co-
incide in two dimensions. Does this remain true in higher dimensions? In
other words, is T-difference-separability a sufficient condition for H-differ-
ence-separability? Moreover, we are not aware of interesting compact T-
difference-separable (or H-difference-separable) sets in higher dimensions
beyond ellipsoids. Are these families equivalent to ellipsoids?

Its natural to wonder whether any of the conditions of Theorems 1.3
and 1.4 can be relaxed. Firstly, it seems plausible that the separability
conditions can be weakened, however a proof of ∃R-hardness would most
likely require new techniques. Secondly, the NP-membership of recogni-
tion for families of homothets of a given polygon show the need for some
curvature in order to show ∃R-hardness. We wonder if it is sufficient for
∃R-hardness to assume curvature at only one boundary part instead of two
opposite ones. An interesting starting point could be the family of semi-
disks. Another open question is to consider families that include rotated
copies of a fixed geometric object. Allowing for rotation, it is conceivable
that ∃R-hardness even holds for polygons.
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