We investigate the product structure of hereditary graph classes admitting strongly sublinear separators. We characterise such classes as subgraphs of the strong product of a star and a complete graph of strongly sublinear size. In a more precise result, we show that if any hereditary graph class $\mathcal{G}$ admits $O(n^{1-\epsilon })$ separators, then for any fixed $\delta \in (0,\epsilon )$ every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-depth and a complete graph of size $O(n^{1-\epsilon +\delta })$. This result holds with $\delta =0$ if we allow $H$ to have tree-depth $O(\log \log n)$. Moreover, using extensions of classical isoperimetric inequalties for grids graphs, we show the dependence on $\delta $ in our results and the above $\mathrm{td}(H)\in O(\log \log n)$ bound are both best possible. We prove that $n$-vertex graphs of bounded treewidth are subgraphs of the product of a graph with tree-depth $t$ and a complete graph of size $O(n^{1/t})$, which is best possible. Finally, we investigate the conjecture that for any hereditary graph class $\mathcal{G}$ that admits $O(n^{1-\epsilon })$ separators, every $n$-vertex graph in $\mathcal{G}$ is a subgraph of the strong product of a graph $H$ with bounded tree-width and a complete graph of size $O(n^{1-\epsilon })$. We prove this for various classes $\mathcal{G}$ of interest.
Accepted:
Published online:
Keywords: separators, treewidth, product structure
Dvořák, Zdeněk 1; Wood, David R. 2

@article{IGT_2025__2__191_0, author = {Dvo\v{r}\'ak, Zden\v{e}k and Wood, David R.}, title = {Product {Structure} of {Graph} {Classes} with {Strongly} {Sublinear} {Separators}}, journal = {Innovations in Graph Theory}, pages = {191--222}, publisher = {Stichting Innovations in Graph Theory}, volume = {2}, year = {2025}, doi = {10.5802/igt.10}, language = {en}, url = {https://igt.centre-mersenne.org/articles/10.5802/igt.10/} }
TY - JOUR AU - Dvořák, Zdeněk AU - Wood, David R. TI - Product Structure of Graph Classes with Strongly Sublinear Separators JO - Innovations in Graph Theory PY - 2025 SP - 191 EP - 222 VL - 2 PB - Stichting Innovations in Graph Theory UR - https://igt.centre-mersenne.org/articles/10.5802/igt.10/ DO - 10.5802/igt.10 LA - en ID - IGT_2025__2__191_0 ER -
%0 Journal Article %A Dvořák, Zdeněk %A Wood, David R. %T Product Structure of Graph Classes with Strongly Sublinear Separators %J Innovations in Graph Theory %D 2025 %P 191-222 %V 2 %I Stichting Innovations in Graph Theory %U https://igt.centre-mersenne.org/articles/10.5802/igt.10/ %R 10.5802/igt.10 %G en %F IGT_2025__2__191_0
Dvořák, Zdeněk; Wood, David R. Product Structure of Graph Classes with Strongly Sublinear Separators. Innovations in Graph Theory, Volume 2 (2025), pp. 191-222. doi : 10.5802/igt.10. https://igt.centre-mersenne.org/articles/10.5802/igt.10/
[1] Partitioning into graphs with only small components, J. Comb. Theory, Ser. B, Volume 87 (2003) no. 2, pp. 231-243 | DOI | MR | Zbl
[2] A separator theorem for nonplanar graphs, J. Am. Math. Soc., Volume 3 (1990) no. 4, pp. 801-808 | DOI | MR | Zbl
[3] Smaller Extended Formulations for Spanning Tree Polytopes in Minor-closed Classes and Beyond, Electron. J. Comb., Volume 28 (2021) no. 4, Paper no. P4.47, 16 pages | DOI | MR | Zbl
[4] Gap-planar graphs, Theor. Comput. Sci., Volume 745 (2018), pp. 36-52 | DOI | MR | Zbl
[5] Notes on nonrepetitive graph colouring, Electron. J. Comb., Volume 15 (2008), Paper no. R99, 13 pages | DOI | MR | Zbl
[6] Fan-Planar Graphs, Beyond Planar Graphs (Hong, Seok-Hee; Tokuyama, Takeshi, eds.), Springer, 2020, pp. 131-148 | DOI | Zbl
[7] Graph Product Structure for -Framed Graphs, Electron. J. Comb., Volume 31 (2024) no. 4, Paper no. P4.56, 33 pages | DOI | Zbl
[8] The complexity of finding uniform emulations on fixed graphs, Inf. Process. Lett., Volume 29 (1988) no. 3, pp. 137-141 | DOI | Zbl
[9] The complexity of finding uniform emulations on paths and ring networks, Inform. Comput., Volume 86 (1990) no. 1, pp. 87-106 | DOI | Zbl
[10] A partial -arboretum of graphs with bounded treewidth, Theor. Comput. Sci., Volume 209 (1998) no. 1-2, pp. 1-45 | DOI | MR | Zbl
[11] A note on domino treewidth, Discrete Math. Theor. Comput. Sci., Volume 3 (1999) no. 4, pp. 141-150 https://dmtcs.episciences.org/256 | MR | Zbl
[12] Domino treewidth, J. Algorithms, Volume 24 (1997) no. 1, pp. 94-123 | DOI | MR | Zbl
[13] On the Parameterized Complexity of Computing Tree-Partitions, Proc. 17th International Symposium on Parameterized and Exact Computation (IPEC 2022) (Dell, Holger; Nederlof, Jesper, eds.) (LIPIcs), Volume 249, Schloss Dagstuhl (2022), Paper no. 7, 20 pages | DOI | MR | Zbl
[14] Simulation of large networks on smaller networks, Inf. Control, Volume 71 (1986) no. 3, pp. 143-180 | DOI | Zbl
[15] Edge-isoperimetric inequalities in the grid, Combinatorica, Volume 11 (1991) no. 4, pp. 299-314 | DOI | MR | Zbl
[16] Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond) (2022) | arXiv | DOI
[17] Asymptotically optimal vertex ranking of planar graphs (2020) | arXiv | DOI | Zbl
[18] Product structure of graph classes with bounded treewidth, Comb. Probab. Comput., Volume 33 (2024) no. 3, pp. 351-376 | DOI | MR | Zbl
[19] Distinct Distances in Graph Drawings, Electron. J. Comb., Volume 15 (2008), Paper no. R107, 23 pages https://www.combinatorics.org/v15i1r107 | MR | Zbl
[20] An O(log OPT)-Approximation for Covering and Packing Minor Models of , Algorithmica, Volume 80 (2018) no. 4, pp. 1330-1356 | DOI | MR | Zbl
[21] Improved bounds for centered colorings, Adv. Comb. (2021), Paper no. 8, 28 pages | DOI | MR | Zbl
[22] Computing Straight-line 3D Grid Drawings of Graphs in Linear Volume, Comput. Geom. Theory Appl., Volume 32 (2005) no. 1, pp. 26-58 | DOI | MR | Zbl
[23] Graph theory, Graduate Texts in Mathematics, 173, Springer, 2018
[24] Graph minor hierarchies, Discrete Appl. Math., Volume 145 (2005) no. 2, pp. 167-182 | DOI | MR | Zbl
[25] Some results on tree decomposition of graphs, J. Graph Theory, Volume 20 (1995) no. 4, pp. 481-499 | DOI | MR | Zbl
[26] On tree-partitions of graphs, Discrete Math., Volume 149 (1996) no. 1–3, pp. 45-58 | DOI | MR | Zbl
[27] Partitioning graphs of bounded tree-width, Combinatorica, Volume 18 (1998) no. 1, pp. 1-12 | DOI | MR | Zbl
[28] Surfaces, tree-width, clique-minors, and partitions, J. Comb. Theory, Ser. B, Volume 79 (2000) no. 2, pp. 221-246 | DOI | MR | Zbl
[29] Product structure extension of the Alon–Seymour–Thomas Theorem, SIAM J. Discrete Math., Volume 38 (2024) no. 3, pp. 2095-2107 | DOI | Zbl
[30] Improved Product Structure for Graphs on Surfaces, Discrete Math. Theor. Comput. Sci., Volume 24 (2022) no. 2, Paper no. 6, Paper no. #6, 10 pages | DOI | MR | Zbl
[31] Powers of planar graphs, product structure, and blocking partitions, Innov. Graph Theory, Volume 1 (2024), pp. 39-86 | DOI | MR | Zbl
[32] Tree-Partitions with Bounded Degree Trees, 2021–2022 MATRIX Annals (Wood, David R.; de Gier, Jan; Praeger, Cheryl E., eds.), Springer, 2024, pp. 203-212 | DOI | Zbl
[33] A separator theorem, C. R. Acad. Bulg. Sci., Volume 34 (1981) no. 5, pp. 643-645 | MR | Zbl
[34] Size-Ramsey numbers of structurally sparse graphs (2023) | arXiv | DOI | Zbl
[35] Structure of Graphs with Locally Restricted Crossings, SIAM J. Discrete Math., Volume 31 (2017) no. 2, pp. 805-824 | DOI | MR | Zbl
[36] Adjacency Labelling for Planar Graphs (and Beyond), J. ACM, Volume 68 (2021) no. 6, Paper no. 42, Paper no. #42, 33 pages | DOI | MR | Zbl
[37] Planar Graphs have Bounded Nonrepetitive Chromatic Number, Adv. Comb. (2020), Paper no. 5, 11 pages | DOI | MR | Zbl
[38] Planar Graphs have Bounded Queue-Number, J. ACM, Volume 67 (2020) no. 4, Paper no. 22, Paper no. #22, 38 pages | DOI | MR | Zbl
[39] Layout of Graphs with Bounded Tree-Width, SIAM J. Comput., Volume 34 (2005) no. 3, pp. 553-579 | DOI | MR | Zbl
[40] Layered Separators in Minor-Closed Graph Classes with Applications, J. Comb. Theory, Ser. B, Volume 127 (2017), pp. 111-147 | DOI | MR | Zbl
[41] Graph product structure for non-minor-closed classes, J. Comb. Theory, Ser. B, Volume 162 (2023), pp. 34-67 | DOI | MR | Zbl
[42] Graph Drawings with Few Slopes, Comput. Geom. Theory Appl., Volume 38 (2007), pp. 181-193 | DOI | MR | Zbl
[43] On weighted sublinear separators, J. Graph Theory, Volume 100 (2022) no. 2, pp. 270-280 | DOI | MR | Zbl
[44] On Comparable Box Dimension, Proc. 38th Int’l Symp. on Computat. Geometry (SoCG 2022) (Goaoc, Xavier; Kerber, Michael, eds.) (LIPIcs), Volume 224, Schloss Dagstuhl (2022), Paper no. 38, 14 pages | DOI | MR | Zbl
[45] Sublinear separators in intersection graphs of convex shapes, SIAM J. Discrete Math., Volume 35 (2021) no. 2, pp. 1149-1164 | DOI | MR | Zbl
[46] Islands in minor-closed classes. I. Bounded treewidth and separators (2017) | arXiv | DOI | Zbl
[47] Treewidth of graphs with balanced separations, J. Comb. Theory, Ser. B, Volume 137 (2019), pp. 137-144 | DOI | MR | Zbl
[48] Quotient tree partitioning of undirected graphs, BIT, Volume 26 (1986) no. 2, pp. 148-155 | DOI | MR | Zbl
[49] New upper bounds on harmonious colorings, J. Graph Theory, Volume 18 (1994) no. 3, pp. 257-267 | DOI | MR | Zbl
[50] Crossing Patterns in Nonplanar Road Networks, Proc. 25th ACM SIGSPATIAL Int’l Conf. on Advances in Geographic Information Systems (2017), Paper no. 40, 9 pages | DOI
[51] Sparse Universal Graphs for Planarity, J. Lond. Math. Soc., Volume 108 (2023) no. 4, pp. 1333-1357 | DOI | MR | Zbl
[52] Quotient Networks, IEEE Trans. Comput., Volume C-31 (1982) no. 4, pp. 288-295 | DOI | Zbl
[53] Packing and Covering Immersion Models of Planar Subcubic Graphs, Proc. 42nd Int’l Workshop on Graph-Theoretic Concepts in Computer Science (WG 2016) (Heggernes, Pinar, ed.) (Lecture Notes in Computer Science), Volume 9941, Springer (2016), pp. 74-84 | DOI | MR | Zbl
[54] A separator theorem for graphs of bounded genus, J. Algorithms, Volume 5 (1984) no. 3, pp. 391-407 | DOI | MR | Zbl
[55] Algorithms for Graphs Embeddable with Few Crossings per Edge, Algorithmica, Volume 49 (2007) no. 1, pp. 1-11 | DOI | MR | Zbl
[56] Tree-partitions of infinite graphs, Discrete Math., Volume 97 (1991), pp. 203-217 | DOI | MR | Zbl
[57] Shallow Minors, Graph Products and Beyond-Planar Graphs, SIAM J. Discrete Math., Volume 38 (2024) no. 1, pp. 1057-1089 | DOI | MR | Zbl
[58] Product structure of graphs with an excluded minor, Trans. Amer. Math. Soc., Ser. B, Volume 11 (2024), pp. 1233-1248 | DOI | MR | Zbl
[59] Bounding Twin-Width for Bounded-Treewidth Graphs, Planar Graphs, and Bipartite Graphs, Proc. 48th Int’l Workshop on Graph-Theoretic Concepts in Comput. Sci. (WG 2022) (Bekos, Michael A.; Kaufmann, Michael, eds.) (Lecture Notes in Computer Science), Volume 13453, Springer (2022), pp. 287-299 | DOI | MR | Zbl
[60] The Density of Fan-Planar Graphs, Electron. J. Comb., Volume 29 (2022) no. 1, Paper no. P1.29, 25 pages | DOI | MR | Zbl
[61] Twin-Width of Graphs on Surfaces, Proc. 49th Int’l Symp. on Math’l Foundations of Comput. Sci. (MFCS 2024) (Královič, Rastislav; Kučera, Antonín, eds.) (LIPIcs), Volume 306, Schloss Dagstuhl (2024), Paper no. 66, 15 pages https://drops.dagstuhl.de/... | DOI | MR
[62] Logical aspects of Cayley-graphs: the group case, Ann. Pure Appl. Logic, Volume 131 (2005) no. 1–3, pp. 263-286 | DOI | MR | Zbl
[63] Separators in region intersection graphs (2016) | arXiv | DOI
[64] Separators in region intersection graphs, Proc. 8th Innovations in Theoretical Computer Science Conference (Papadimitriou, Christos H., ed.) (LIPIcs), Volume 67, Schloss Dagstuhl, 2017, Paper no. 1, 8 pages | DOI | Zbl
[65] Graph colouring with no large monochromatic components, Comb. Probab. Comput., Volume 17 (2008) no. 4, pp. 577-589 | DOI | MR | Zbl
[66] A separator theorem for planar graphs, SIAM J. Appl. Math., Volume 36 (1979) no. 2, pp. 177-189 | DOI | MR | Zbl
[67] Applications of a planar separator theorem, SIAM J. Comput., Volume 9 (1980) no. 3, pp. 615-627 | DOI | MR
[68] Defective colouring of graphs excluding a subgraph or minor, Combinatorica, Volume 39 (2019) no. 2, pp. 377-410 | DOI | MR | Zbl
[69] Separators for sphere-packings and nearest neighbor graphs, J. ACM, Volume 44 (1997) no. 1, pp. 1-29 | DOI | MR | Zbl
[70] Graphs on surfaces, Johns Hopkins University Press, 2001 | DOI | MR | Zbl
[71] Sparsity, Algorithms and Combinatorics, 28, Springer, 2012 | DOI | MR | Zbl
[72] Recent techniques and results on the Erdős–Pósa property, Discrete Appl. Math., Volume 231 (2017), pp. 25-43 | DOI | MR | Zbl
[73] Fractional colouring and Hadwiger’s conjecture, J. Comb. Theory, Ser. B, Volume 74 (1998) no. 2, pp. 147-152 | DOI | MR | Zbl
[74] Graph minors. II. Algorithmic aspects of tree-width, J. Algorithms, Volume 7 (1986) no. 3, pp. 309-322 | DOI | MR | Zbl
[75] Graph minors. V. Excluding a planar graph, J. Comb. Theory, Ser. B, Volume 41 (1986) no. 1, pp. 92-114 | DOI | MR | Zbl
[76] Tree-partite graphs and the complexity of algorithms, Proc. Int’l Conf. on Fundamentals of Computation Theory (Budach, Lothar, ed.) (Lecture Notes in Computer Science), Volume 199, Springer (1985), pp. 412-421 | DOI | Zbl
[77] Geometric Separator Theorems & Applications, Proc. 39th Annual Symp. on Foundations of Comput. Sci. (FOCS ’98), IEEE (1998), pp. 232-243 | DOI
[78] On the presence of disjoint subgraphs of a specified type, J. Graph Theory, Volume 12 (1988) no. 1, pp. 101-111 | DOI | MR | Zbl
[79] An improved planar graph product structure theorem, Electron. J. Comb., Volume 29 (2022), Paper no. P2.51, 12 pages | DOI | MR | Zbl
[80] Vertex partitions of chordal graphs, J. Graph Theory, Volume 53 (2006) no. 2, pp. 167-172 | DOI | MR | Zbl
[81] On tree-partition-width, Eur. J. Comb., Volume 30 (2009) no. 5, pp. 1245-1253 | DOI | MR | Zbl
[82] Defective and Clustered Graph Colouring, Electron. J. Comb., Volume DS23 (2018) (Version 1) | DOI | MR | Zbl
[83] Planar Decompositions and the Crossing Number of Graphs with an Excluded Minor, New York J. Math., Volume 13 (2007), pp. 117-146 http://nyjm.albany.edu/j/2007/13-8.html | MR | Zbl
[84] Generalization bounds for learning under graph-dependence: a survey, Mach. Learn., Volume 113 (2024) no. 7, pp. 3929-3959 | DOI | MR
Cited by Sources: