Rainbow subgraphs of uniformly coloured randomly perturbed graphs
Innovations in Graph Theory, Volume 2 (2025), pp. 245-273

For a given $\delta \in (0,1)$, the randomly perturbed graph model is defined as the union of any $n$-vertex graph $G_0$ with minimum degree $\delta n$ and the binomial random graph $\mathbf{G}(n,p)$ on the same vertex set. Moreover, we say that a graph is uniformly coloured with colours in $\mathcal{C}$ if each edge is coloured independently and uniformly at random with a colour from $\mathcal{C}$.

Based on a coupling idea of McDiarmid, we provide a general tool to tackle problems concerning finding a rainbow copy of a graph $H=H(n)$ in a uniformly coloured perturbed $n$-vertex graph with colours in $[(1+o(1))e(H)]$. For example, our machinery easily allows to recover a result of Aigner-Horev and Hefetz concerning rainbow Hamilton cycles, and to improve a result of Aigner-Horev, Hefetz and Lahiri concerning rainbow bounded-degree spanning trees.

Furthermore, using different methods, we prove that for any $\delta \in (0,1)$ and integer $d \ge 2$, there exists $C=C(\delta ,d)>0$ such that the following holds. Let $T$ be a tree on $n$ vertices with maximum degree at most $d$ and $G_0$ be an $n$-vertex graph with $\delta (G_0)\ge \delta n$. Then a uniformly coloured $G_0 \cup \mathbf{G}(n,C/n)$ with colours in $[n-1]$ contains a rainbow copy of $T$ with high probability. This is optimal both in terms of colours and edge probability (up to a constant factor).

Received:
Accepted:
Published online:
DOI: 10.5802/igt.12
Classification: 05C80, 05C35
Keywords: Randomly perturbed graphs, Rainbow subgraphs, Coupling, Trees

Katsamaktsis, Kyriakos 1; Letzter, Shoham 1; Sgueglia, Amedeo 2

1 Department of Mathematics, University College London, London, UK
2 Fakultät für Informatik und Mathematik, Universität Passau, Passau, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{IGT_2025__2__245_0,
     author = {Katsamaktsis, Kyriakos and Letzter, Shoham and Sgueglia, Amedeo},
     title = {Rainbow subgraphs of uniformly coloured randomly perturbed graphs},
     journal = {Innovations in Graph Theory},
     pages = {245--273},
     year = {2025},
     publisher = {Stichting Innovations in Graph Theory},
     volume = {2},
     doi = {10.5802/igt.12},
     language = {en},
     url = {https://igt.centre-mersenne.org/articles/10.5802/igt.12/}
}
TY  - JOUR
AU  - Katsamaktsis, Kyriakos
AU  - Letzter, Shoham
AU  - Sgueglia, Amedeo
TI  - Rainbow subgraphs of uniformly coloured randomly perturbed graphs
JO  - Innovations in Graph Theory
PY  - 2025
SP  - 245
EP  - 273
VL  - 2
PB  - Stichting Innovations in Graph Theory
UR  - https://igt.centre-mersenne.org/articles/10.5802/igt.12/
DO  - 10.5802/igt.12
LA  - en
ID  - IGT_2025__2__245_0
ER  - 
%0 Journal Article
%A Katsamaktsis, Kyriakos
%A Letzter, Shoham
%A Sgueglia, Amedeo
%T Rainbow subgraphs of uniformly coloured randomly perturbed graphs
%J Innovations in Graph Theory
%D 2025
%P 245-273
%V 2
%I Stichting Innovations in Graph Theory
%U https://igt.centre-mersenne.org/articles/10.5802/igt.12/
%R 10.5802/igt.12
%G en
%F IGT_2025__2__245_0
Katsamaktsis, Kyriakos; Letzter, Shoham; Sgueglia, Amedeo. Rainbow subgraphs of uniformly coloured randomly perturbed graphs. Innovations in Graph Theory, Volume 2 (2025), pp. 245-273. doi: 10.5802/igt.12

[1] Aigner-Horev, E.; Hefetz, D. Rainbow Hamilton cycles in randomly colored randomly perturbed dense graphs, SIAM J. Discrete Math., Volume 35 (2021) no. 3, pp. 1569-1577 | DOI | Zbl | MR

[2] Aigner-Horev, E.; Hefetz, D.; Lahiri, A. Rainbow trees in uniformly edge-colored graphs, Random Struct. Algorithms, Volume 62 (2023) no. 2, pp. 287-303 | DOI | Zbl | MR

[3] Alon, N.; Krivelevich, M.; Sudakov, B. Embedding nearly-spanning bounded degree trees, Combinatorica, Volume 27 (2007) no. 6, pp. 629-644 | DOI | Zbl | MR

[4] Antoniuk, S.; Dudek, A.; Reiher, C.; Ruciński, A.; Schacht, M. High powers of Hamiltonian cycles in randomly augmented graphs, J. Graph Theory, Volume 98 (2021) no. 2, pp. 255-284 | DOI | Zbl | MR

[5] Antoniuk, S.; Dudek, A.; Ruciński, A. Powers of Hamiltonian cycles in randomly augmented Dirac graphs—the complete collection, J. Graph Theory, Volume 104 (2023) no. 4, pp. 811-835 | DOI | Zbl | MR

[6] Bal, D.; Frieze, A. Rainbow matchings and Hamilton cycles in random graphs, Random Struct. Algorithms, Volume 48 (2016) no. 3, pp. 503-523 | DOI | Zbl | MR

[7] Balogh, J.; Treglown, A.; Wagner, A. Z. Tilings in randomly perturbed dense graphs, Comb. Probab. Comput., Volume 28 (2019) no. 2, pp. 159-176 | DOI | MR | Zbl

[8] Bohman, T.; Frieze, A.; Martin, R. How many random edges make a dense graph Hamiltonian?, Random Struct. Algorithms, Volume 22 (2003) no. 1, pp. 33-42 | DOI | Zbl | MR

[9] Böttcher, J.; Han, J.; Kohayakawa, Y.; Montgomery, R.; Parczyk, O.; Person, Y. Universality for bounded degree spanning trees in randomly perturbed graphs, Random Struct. Algorithms, Volume 55 (2019) no. 4, pp. 854-864 | Zbl | MR | DOI

[10] Böttcher, J.; Montgomery, R.; Parczyk, O.; Person, Y. Embedding spanning bounded graphs in randomly perturbed graphs, Mathematika, Volume 66 (2020) no. 2, pp. 422-447 | DOI | Zbl | MR

[11] Böttcher, J.; Parczyk, O.; Sgueglia, A.; Skokan, J. Triangles in randomly perturbed graphs, Comb. Probab. Comput., Volume 32 (2023) no. 1, pp. 91-121 | DOI | MR | Zbl

[12] Böttcher, J.; Parczyk, O.; Sgueglia, A.; Skokan, J. The square of a Hamilton cycle in randomly perturbed graphs, Random Struct. Algorithms, Volume 65 (2024) no. 2, pp. 342-386 | DOI | MR | Zbl

[13] Dudek, A.; Reiher, C.; Ruciński, A.; Schacht, M. Powers of Hamiltonian cycles in randomly augmented graphs, Random Struct. Algorithms, Volume 56 (2020) no. 1, pp. 122-141 | DOI | Zbl | MR

[14] Ferber, A. Closing gaps in problems related to Hamilton cycles in random graphs and hypergraphs, Electron. J. Comb., Volume 22 (2015) no. 1, Paper no. 1.61, 7 pages | Zbl | MR

[15] Ferber, A.; Krivelevich, M. Rainbow Hamilton cycles in random graphs and hypergraphs, Recent trends in combinatorics (The IMA Volumes in Mathematics and its Applications), Volume 159, Springer, 2016, pp. 167-189 | DOI | Zbl

[16] Frieze, A.; Loh, P.-S. Rainbow Hamilton cycles in random graphs, Random Struct. Algorithms, Volume 44 (2014) no. 3, pp. 328-354 | DOI | Zbl | MR

[17] Gould, S.; Kelly, T.; Kühn, D.; Osthus, D. Almost all optimally coloured complete graphs contain a rainbow Hamilton path, J. Comb. Theory, Ser. B, Volume 156 (2022), pp. 57-100 | DOI | MR | Zbl

[18] Han, J.; Morris, P.; Treglown, A. Tilings in randomly perturbed graphs: bridging the gap between Hajnal-Szemerédi and Johansson-Kahn-Vu, Random Struct. Algorithms, Volume 58 (2021) no. 3, pp. 480-516 | MR | DOI | Zbl

[19] Janson, S.; Ruciński, A.; Łuczak, T. Random Graphs, John Wiley & Sons, 2011 | MR

[20] Joos, F.; Kim, J. Spanning trees in randomly perturbed graphs, Random Struct. Algorithms, Volume 56 (2020) no. 1, pp. 169-219 | DOI | Zbl | MR

[21] Katsamaktsis, K.; Letzter, S. Rainbow Hamiltonicity in uniformly coloured perturbed graphs (2023) | arXiv

[22] Katsamaktsis, K.; Letzter, S.; Sgueglia, A. Rainbow Hamiltonicity in uniformly coloured perturbed digraphs, Comb. Probab. Comput., Volume 33 (2024) no. 5, pp. 624-642 | DOI | MR

[23] Krivelevich, M. Embedding spanning trees in random graphs, SIAM J. Discrete Math., Volume 24 (2010) no. 4, pp. 1495-1500 | DOI | Zbl | MR

[24] Krivelevich, M.; Kwan, M.; Sudakov, B. Bounded-degree spanning trees in randomly perturbed graphs, SIAM J. Discrete Math., Volume 31 (2017) no. 1, pp. 155-171 | DOI | MR | Zbl

[25] McDiarmid, C. Clutter percolation and random graphs, Math. Program. Study, Volume 13 (1980), pp. 17-25 | Zbl | DOI | MR

[26] Montgomery, R. Embedding bounded degree spanning trees in random graphs (2014) | arXiv | Zbl

[27] Montgomery, R. Spanning trees in random graphs, Adv. Math., Volume 356 (2019), Paper no. 106793, 92 pages | DOI | MR | Zbl

[28] Nenadov, R.; Trujić, M. Sprinkling a few random edges doubles the power, SIAM J. Discrete Math., Volume 35 (2021) no. 2, pp. 988-1004 | DOI | MR | Zbl

Cited by Sources: