The minimum positive co-degree of a nonempty $r$-graph $H$, denoted by $\delta _{r-1}^+(H)$, is the largest integer $k$ such that for every $(r-1)$-set $S \subset V(H)$, if $S$ is contained in a hyperedge of $H$, then $S$ is contained in at least $k$ hyperedges of $H$. Given a family $\mathcal{F}$ of $r$-graphs, the positive co-degree Turán function $\mathrm{co}^+\mathrm{ex}(n,\mathcal{F})$ is the maximum of $\delta _{r-1}^+(H)$ over all $n$-vertex $r$-graphs $H$ containing no member of $\mathcal{F}$. The positive co-degree density of $\mathcal{F}$ is $\gamma ^+(\mathcal{F}) = \underset{n \rightarrow \infty }{\lim } \frac{\mathrm{co}^+\mathrm{ex}(n,\mathcal{F})}{n}.$ While the existence of $\gamma ^+(\mathcal{F})$ is proved for all families $\mathcal{F}$, only few positive co-degree densities are known exactly.
For a fixed $r \ge 2$, we call $\alpha \in [0,1]$ an achievable value if there exists a family of $r$-graphs $\mathcal{F}$ with $\gamma ^+(\mathcal{F}) = \alpha $, and call $\alpha $ a jump if for some $\delta > 0$, there is no family $\mathcal{F}$ with $\gamma ^+(\mathcal{F}) \in (\alpha , \alpha + \delta )$. Halfpap, Lemons, and Palmer [27] showed that every $\alpha \in [0, \frac{1}{r})$ is a jump. We extend this result by showing that every $\alpha \in [0, \frac{2}{2r -1})$ is a jump. We also show that for $r = 3$, the set of achievable values is infinite, more precisely, $\frac{k-2}{2k-3}$ for every $k \ge 4$ is achievable. Finally, we determine two additional achievable values for $r=3$ using flag algebra calculations.
Accepted:
Published online:
Keywords: positive co-degree, hypergraph, Turán, jump, flag algebras
Balogh, József  1 ; Halfpap, Anastasia  2 ; Lidický, Bernard  3 ; Palmer, Cory  4
CC-BY 4.0
@article{IGT_2026__3__1_0,
author = {Balogh, J\'ozsef and Halfpap, Anastasia and Lidick\'y, Bernard and Palmer, Cory},
title = {Positive co-degree densities and jumps},
journal = {Innovations in Graph Theory},
pages = {1--36},
year = {2026},
publisher = {Stichting Innovations in Graph Theory},
volume = {3},
doi = {10.5802/igt.16},
language = {en},
url = {https://igt.centre-mersenne.org/articles/10.5802/igt.16/}
}
TY - JOUR AU - Balogh, József AU - Halfpap, Anastasia AU - Lidický, Bernard AU - Palmer, Cory TI - Positive co-degree densities and jumps JO - Innovations in Graph Theory PY - 2026 SP - 1 EP - 36 VL - 3 PB - Stichting Innovations in Graph Theory UR - https://igt.centre-mersenne.org/articles/10.5802/igt.16/ DO - 10.5802/igt.16 LA - en ID - IGT_2026__3__1_0 ER -
%0 Journal Article %A Balogh, József %A Halfpap, Anastasia %A Lidický, Bernard %A Palmer, Cory %T Positive co-degree densities and jumps %J Innovations in Graph Theory %D 2026 %P 1-36 %V 3 %I Stichting Innovations in Graph Theory %U https://igt.centre-mersenne.org/articles/10.5802/igt.16/ %R 10.5802/igt.16 %G en %F IGT_2026__3__1_0
Balogh, József; Halfpap, Anastasia; Lidický, Bernard; Palmer, Cory. Positive co-degree densities and jumps. Innovations in Graph Theory, Volume 3 (2026), pp. 1-36. doi: 10.5802/igt.16
[1] Every monotone 3-graph property is testable, SIAM J. Discrete Math., Volume 21 (2007) no. 1, pp. 73-92 | DOI | MR | Zbl
[2] Turán densities of hypercubes (2012) | arXiv | Zbl
[3] Hypergraphs do jump, Comb. Probab. Comput., Volume 20 (2011) no. 2, pp. 161-171 | DOI | MR | Zbl
[4] The Turán density of triple systems is not principal, J. Comb. Theory, Ser. A, Volume 100 (2002) no. 1, pp. 176-180 | DOI | Zbl | MR
[5] Hypergraph Turán problems in -norm, Surveys in combinatorics 2022 (London Mathematical Society Lecture Note Series), Volume 481, Cambridge University Press, 2022, pp. 21-63 | DOI | MR | Zbl
[6] Maximum size intersecting families of bounded minimum positive co-degree, SIAM J. Discrete Math., Volume 35 (2021) no. 3, pp. 1525-1535 | DOI | MR | Zbl
[7] Turán Density of Long Tight Cycle Minus One Hyperedge, Combinatorica, Volume 44 (2024) no. 5, pp. 949-976 | DOI | Zbl | MR
[8] The Turán density of short tight cycles (2025) | arXiv
[9] The Turán density of the tight 5-cycle minus one edge (2025) | arXiv
[10] Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math., Volume 8 (1974), pp. 21-24 | DOI | MR | Zbl
[11] Daisies and other Turán problems, Comb. Probab. Comput., Volume 20 (2011) no. 5, pp. 743-747 | DOI | MR | Zbl
[12] Graph removal lemmas, Surveys in combinatorics 2013 (London Mathematical Society Lecture Note Series), Volume 409, Cambridge University Press, 2013, pp. 1-49 | MR | Zbl
[13] A note on codegree problems for hypergraphs, Bull. Inst. Comb. Appl., Volume 32 (2001), pp. 63-69 | MR | Zbl
[14] The maximum size of 3-uniform hypergraphs not containing a Fano plane, J. Comb. Theory, Ser. B, Volume 78 (2000) no. 2, pp. 274-276 | DOI | MR | Zbl
[15] Vanishing codegree Turán density implies vanishing uniform Turán density (2023) | arXiv | Zbl
[16] Turán densities for daisies and hypercubes, Bull. Lond. Math. Soc., Volume 56 (2024) no. 12, pp. 3838-3853 | DOI | MR | Zbl
[17] A limit theorem in graph theory, Stud. Sci. Math. Hung., Volume 1 (1966), pp. 51-57 | MR | Zbl
[18] On the structure of linear graphs, Bull. Am. Math. Soc., Volume 52 (1946), pp. 1087-1091 | DOI | MR | Zbl
[19] The codegree threshold for 3-graphs with independent neighborhoods, SIAM J. Discrete Math., Volume 29 (2015) no. 3, pp. 1504-1539 | DOI | MR | Zbl
[20] The codegree threshold of , J. Lond. Math. Soc. (2), Volume 107 (2023) no. 5, pp. 1660-1691 | DOI | MR | Zbl
[21] Applications of the Semi-Definite Method to the Turán Density Problem for 3-Graphs, Comb. Probab. Comput., Volume 22 (2013) no. 1, pp. 21-54 | DOI | Zbl | MR
[22] A new generalization of the Erdős-Ko-Rado theorem, Combinatorica, Volume 3 (1983) no. 3-4, pp. 341-349 | DOI | MR | Zbl
[23] An exact result for -graphs, Discrete Math., Volume 50 (1984) no. 2-3, pp. 323-328 | DOI | MR | Zbl
[24] Hypergraphs do not jump, Combinatorica, Volume 4 (1984) no. 2-3, pp. 149-159 | DOI | MR | Zbl
[25] The Turán density of the hypergraph , Electron. J. Comb., Volume 10 (2003), Paper no. 18, 7 pages | DOI | MR | Zbl
[26] personal communication
[27] Positive co-degree density of hypergraphs (2024) | arXiv
[28] Positive co-degree thresholds for spanning structures (2024) | arXiv | Zbl
[29] The Turán Density of Tight Cycles in Three-Uniform Hypergraphs, Int. Math. Res. Not., Volume 2024 (2023) no. 6, pp. 4804-4841 | DOI | Zbl | MR
[30] Hypergraph Turán problems, Surveys in combinatorics 2011 (London Mathematical Society Lecture Note Series), Volume 392, Cambridge University Press, 2011, pp. 83-139 | MR | DOI | Zbl
[31] The Hypergraph Turán Densities of Tight Cycles Minus an Edge (2024) | arXiv | Zbl
[32] On codegree Turán density of the 3-uniform tight cycle (2024) | arXiv | Zbl
[33] The co-degree density of the Fano plane, J. Comb. Theory, Ser. B, Volume 95 (2005) no. 2, pp. 333-337 | DOI | MR | Zbl
[34] On the Turán number of triple systems, J. Comb. Theory, Ser. A, Volume 100 (2002) no. 1, pp. 136-152 | DOI | MR | Zbl
[35] Co-degree density of hypergraphs, J. Comb. Theory, Ser. A, Volume 114 (2007) no. 6, pp. 1118-1132 | DOI | MR | Zbl
[36] Turán related problems for hypergraphs, Congr. Numerantium, Volume 136 (1999), pp. 119-127 Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999) | MR | Zbl
[37] The codegree Turán density of tight cycles minus one edge, Comb. Probab. Comput., Volume 32 (2023) no. 6, pp. 881-884 | DOI | MR | Zbl
[38] The codegree Turán density of -uniform tight cycles (2024) | arXiv | Zbl
[39] Hypergraphs with arbitrarily small codegree Turán density (2023) | arXiv | Zbl
[40] On the limit of the positive -degree Turán problem, Electron. J. Comb., Volume 30 (2023) no. 3, Paper no. 3.25, 15 pages | DOI | MR | Zbl
[41] Flag algebras, J. Symb. Log., Volume 72 (2007) no. 4, pp. 1239-1282 | DOI | MR | Zbl
[42] Generalizations of the removal lemma, Combinatorica, Volume 29 (2009) no. 4, pp. 467-501 | DOI | MR | Zbl
[43] Remarks on the connection of graph theory, finite geometry and block designs, Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo II, Accad. Naz. Lincei, Rome, 1976, pp. 223-233 | MR | Zbl
[44] Research problems, Magyar Tud. Akad. Mat. Kutató Int. Közl., Volume 6 (1961), pp. 417-423 | DOI | MR
[45] Flagmatic (http://lidicky.name/flagmatic/flagmatic.html)
[46] personal communication, 2023
[47] Positive co-degree Turán number for and , J. Graph Theory, Volume 109 (2025) no. 1, pp. 25-30 | DOI | MR | Zbl
Cited by Sources:


